Adaptive Greedy Approximations 1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

AdaptiveGreedyApproximations1GeoreyDavisMathematicsDepartment,DartmouthCollegeHanover,NH03755gdavis@cs.dartmouth.eduStephaneMallat,MarcoAvellanedaCourantInstitute,NewYorkUniversity251MercerStreet,NewYork,NY10012mallat@cs.nyu.edu,avellane@nyu.eduAbstractTheproblemofoptimallyapproximatingafunctionwithalinearexpansionoveraredundantdictionaryofwaveformsisNP-hard.Thegreedymatchingpursuitalgorithmanditsorthog-onalizedvariantproducesub-optimalfunctionexpansionsbyiterativelychoosingdictionarywaveformsthatbestmatchthefunction’sstructures.Amatchingpursuitprovidesameansofquicklycomputingcompact,adaptivefunctionapproximations.Numericalexperimentsshowthattheapproximationerrorsfrommatchingpursuitsinitiallydecreaserapidly,buttheasymptoticdecayrateoftheerrorsisslow.Weexplainthisbehaviorbyshowingthatmatchingpursuitsarechaotic,ergodicmaps.Thestatisticalpropertiesoftheapproximationerrorsofapursuitcanbeobtainedfromtheinvariantmeasureofthepursuit.Wecharacterizethesemeasuresusinggroupsymmetriesofdictionariesandbyconstructingastochasticdierentialequationmodel.Wederiveanotionofthecoherenceofasignalwithrespecttoadictionaryfromourcharacterizationoftheapproximationerrorsofapursuit.Thedictionaryelementsselectedduringtheinitialiterationsofapursuitcorrespondtoafunction’scoherentstructures.Thetailoftheexpansion,ontheotherhand,correspondstoanoisewhichischaracterizedbytheinvariantmeasureofthepursuitmap.Whenusingasuitabledictionary,theexpansionofafunctionintoitscoherentstructuresyieldsacompactapproximation.Wedemonstrateadenoisingalgorithmbasedoncoherentfunctionexpansions.1IntroductionFordatacompressionapplicationsandfastnumericalmethodsitisimportanttoaccuratelyapproximatefunctionsfromaHilbertspaceHusingasmallnumberofvectorsfromagiven1ThisworkwassupportedbyanONRgraduatefellowship,theAFOSRgrantF49620-93-1-0102,ONRgrantN00014-91-J-1967,andtheAlfredSloanFoundation1familyfgg2.ForanyM0,wewanttominimizetheapproximationerror(M)=kfX2IMgkwhereIMisanindexsetofcardinalityM.Ifthefamilyfgg2isanorthonormalbasis,thenbecause(M)=X2IMjg;fj2;theerrorisminimizedbytakingIMtocorrespondtotheMvectorswhichhavethelargestinnerproducts(jf;gj)2IM.DependinguponthebasisandthespaceH,itispossibletoestimatethedecayrateoftheminimalapproximationerror0(M)=infIM(M)asMincreases.Forexample,whenfgg2isawaveletbasistherateofdecayof0(M)canbeestimatedforfunctionsthatbelongtoaparticularclassofBesovspaces[9].Conversely,therateofdecayof0(M)canbeusedtodeterminetowhichBesovspaceinthisclassfbelongs.Wecangreatlyimprovetheseapproximationstofbyenlargingthecollectionfgg2beyondabasis.Thisenlarged,redundantfamilyofvectorswecalladictionary.Theadvantageofredundancyinobtainingcompactrepresentationscanbeseenbyconsideringtheproblemofrepresentingatwo-dimensionalsurfacegivenbyf(x;y)onasubsetoftheplane,II.AnadaptivesquaremeshrepresentationoffintheBesovspaceBq(Lq(I)),where1q=+12,canbeobtainedusingawaveletbasis.Thiswaveletrepresentationcanbeshowntobeasymptoticallynearoptimalinthesensethatthedecayrateoftheerror(M)isequaltothelargestdecayattainablebyageneralclassofnon-lineartransform-basedapproximationschemes[10].Eventhesenear-optimalrepresentationsareconstrainedbythefactthatthedecomposi-tionsareoverabasis.Theregulargridstructureofthewaveletbasispreventsthecompactrepresentationofmanyfunctions.Forexample,whenfisequaltoabasiswaveletatthelargestscale,itcanberepresentedexactlybyaexpansionconsistingofasingleelement.However,ifwetranslatethisfbyasmallamount,thenanaccurateapproximationcanrequiremanyelements.Onewaytoimproveourapproximationsistoaddtothesetfgg2thecollectionofalltranslatesofthewavelets.Theclassoffunctionswhichcanbecompactlyrepresentedwillthenbetranslationinvariant.Wecanobtainevenbettercompactapproximationsbyexpandingthedictionarytocontaintheextremelyredundantsetofallpiecewisepolynomialfunctionsonarbitrarytriangles.Whenthedictionaryisredundant,ndingafamilyofMvectorsthatapproximatesfwithanerrorclosetotheminimum0(M)isclearlynotachievedbyselectingthevectorsthathavemaximalinnerproductswithf.Insection2weprovethatforgeneraldictionariestheproblemofndingM-elementoptimalapproximationsbelongstoaclassofcomputationallyintractableproblems,thesetofNP-hardproblems.Itiswidelybelieved(butunproven)thatthenumberofoperationsrequiredtosolveanNP-hardproblemgrowsfasterthananypolynomialintheinputsize[13].Becauseofthedicultyofcomputingoptimalexpansions,weturntosuboptimalalgorithms.Insection3wereviewtheperformanceofgreedyalgorithms,calledmatchingpursuits,that2wereintroducedin[24][7].Wedescribeafastimplementationofthesealgorithms,andwegivenumericalexamplesforadictionarycomposedofwaveformsthatarewell-localizedintimeandfrequency.Suchdictionariesareparticularlyimportantforaudiosignalprocessing.Inournumericalexperimentswendthattherateofdecayofthegreedyapproximationerror(M)decreasesasMbecomeslarge.Theseobservationsareexplainedbyshowingthatamatchingpursuitisachaoticmapwhichhasanergodicinvariantmeasure.Theproofofchaosinsection5isgivenforaparticulardictionaryinalow-dimensionalspace,andwes

1 / 47
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功