温忠麟老师的检验中介效应程序一、中介效应概述中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M为中介变量,而X通过M对Y产生的的间接影响称为中介效应。中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应的不等于间接效应,此时间接效应可以是部分中介效应的和或所有中介效应的总和。以最简单的三变量为例,假设所有的变量都已经中心化,则中介关系可以用回归方程表示如下:Y=cx+e11)M=ax+e22)Y=c’x+bM+e33)上述3个方程模型图及对应方程如下:二、中介效应检验方法中介效应的检验传统上有三种方法,分别是依次检验法、系数乘积项检验法和差异检验法,下面简要介绍下这三种方法:1.依次检验法(causualsteps)。依次检验法分别检验上述1)2)3)三个方程中的回归系数,程序如下:1.1首先检验方程1)y=cx+e1,如果c显著(H0:c=0被拒绝),则继续检验方程2),如果c不显著(说明X对Y无影响),则停止中介效应检验;1.2在c显著性检验通过后,继续检验方程2)M=ax+e2,如果a显著(H0:a=0被拒绝),则继续检验方程3);如果a不显著,则停止检验;1.3在方程1)和2)都通过显著性检验后,检验方程3)即y=c’x+bM+e3,检验b的显著性,若b显著(H0:b=0被拒绝),则说明中介效应显著。此时检验c’,若c’显著,则说明是不完全中介效应;若不显著,则说明是完全中介效应,x对y的作用完全通过M来实现。评价:依次检验容易在统计软件中直接实现,但是这种检验对于较弱的中介效应检验效果不理想,如a较小而b较大时,依次检验判定为中介效应不显著,但是此时ab乘积不等于0,因此依次检验的结果容易犯第二类错误(接受虚无假设即作出中介效应不存在的判断)。2.系数乘积项检验法(productsofcoefficients)。此种方法主要检验ab乘积项的系数是否显著,检验统计量为z=ab/sab,实际上熟悉统计原理的人可以看出,这个公式和总体分布为正态的总体均值显著性检验差不多,不过分子换成了乘积项,分母换成了乘积项联合标准误而已,而且此时总体分布为非正态,因此这个检验公式的Z值和正态分布下的Z值检验是不同的,同理临界概率也不能采用正态分布概率曲线来判断。具体推导公式我就不多讲了,大家有兴趣可以自己去看相关统计书籍。分母sab的计算公式为:sab=2222absbsa,在这个公式中,sb2和sa2分别为a和b的标准误,这个检验称为sobel检验,当然检验公式不止这一种例如GoodmanI检验和GoodmanII检验都可以检验(见下),但在样本比较大的情况下这些检验效果区别不大。在AMOS中没有专门的soble检验的模块,需要自己手工计算出而在lisrel里面则有,其临界值为zα/20.97或zα/2-0.97(P0.05,N≧200)。关于临界值比率表见附件(虚无假设概率分布见MacKinnon表中无中介效应C.V.表,双侧概率,非正态分布。这个临界表没有直接给出.05的双侧概率值,只有.04的双侧概率值;以N=200为例,.05的双侧概率值在其表中大概在±0.90左右,而不是温忠麟那篇文章中提出的0.97。关于这一点,我看了温的参考文献中提到的MacKinnon那篇文章,发现温对于.97的解释是直接照搬MacKinnon原文中的一句话Forexample,theempiricalcriticalvalueis.97forthe.05significancelevelratherthan1.96forthestandardnormaltestofab40.Wedesignatethisteststatisticbyz8becauseitusesadifferentdistributionthanthenormaldistribution.,实际上在MacKinnon的概率表中,这个.97的值是在N=200下对应的.04概率的双侧统计值,而不是.05概率双侧统计值,因为在该表中根本就没有直接给出.05概率的统计值。为了确定这点,我专门查了国外对这个概率表的介绍,发现的确如此,相关文章见附件mediationmodels.rar。当然,从统计概率上来说,大于0.97在这个表中意味着其值对应概率大于.05,但是当统计值小于0.9798th时而大于0.8797th,其值对应概率的判断就比较麻烦了,此时要采用0.90作为P.05的统计值来进行判断。之所以对温的文章提出质疑,是因为这涉及到概率检验的结果可靠性,我为此查了很多资料,累)。GoodmanI检验公式如下GoodmanII检验检验公式如下注:从统计学原理可知,随着样本量增大,样本均值和总体均值的差误趋向于减少;因此从这两个公式可看出,的值随着样本容量增大而呈几何平方值减小,几乎可以忽略不计算,因此MacKinnonetal.(1998)认为乘积项在样本容量较大时是“trivial”(琐碎不必要的)的,因此sobel检验和Goodman检验结果在大样本情况下区别不大,三个检验公式趋向于一致性结果,因此大家用soble检验公式就可以了(详情请参考文献AComparisonofMethodstoTestMediationandOtherInterveningVariableEffects.PsychologicalMethods2002,Vol.7,No.1,83–104)。评价:采用sobel等检验公式对中介效应的检验容易得到中介效应显著性结果,因为其临界概率(MacKinnon)P.05的Z值为zα/20.90或zα/2-0.90,而正态分布曲线下临界概率P.05的Z值为zα/21.96或zα/2-1.96,因此用该临界概率表容易犯第一类错误(拒绝虚无假设而作出中介效应显著的判断)3.差异检验法(differenceincoefficients)。此方法同样要找出联合标准误,目前存在一些计算公式,经过MacKinnon等人的分析,认为其中有两个公式效果较好,分别是Clogg等人和Freedman等人提出的,这两个公式如下:Clogg差异检验公式Freedman差异检验公式'3'cxmNsrcct2'2'2'212xmCCCCNrSSSSCCt这两个公式都采用t检验,可以通过t值表直接查出其临界概率。Clogg等提出的检验公式中,的下标N-3表示t检验的自由度为N-3,为自变量与中介变量的相关系数,为X对Y的间接效应估计值的标准误;同理见Freedman检验公式。评价:这两个公式在a=0且b=0时有较好的检验效果,第一类错误率接近0.05,但当a=0且b≠0时,第一类错误率就非常高有其是Clogg等提出的检验公式在这种情况下第一类错误率达到100%,因此要谨慎对待。4.温忠麟等提出了一个新的检验中介效应的程序,如下图:这个程序实际上只采用了依次检验和sobel检验,同时使第一类错误率和第二类错误率都控制在较小的概率,同时还能检验部分中介效应和完全中介效应,值得推荐。三中介效应操作在统计软件上的实现根据我对国内国外一些文献的检索、分析和研究,发现目前已经有专门分析soble检验的工具软件脚本,可下挂在SPSS当中;然而在AMOS中只能通过手工计算,但好处在于能够方便地处理复杂中介模型,分析间接效应;根据温忠麟介绍,LISREAL也有对应的SOBEL检验分析命令和输出结果,有鉴于此,本文拟通过对在SPSS、AMOS中如何分析中介效应进行操作演示,相关SOBEL检验脚本及临界值表(非正态SOBEL检验临界表)请看附件。1.如何在SPSS中实现中介效应分析这个部分我主要讲下如何在spss中实现中介效应分析(无脚本,数据见附件spss中介分析数据,自变量为工作不被认同,中介变量为焦虑,因变量为工作绩效)。第一步:将自变量(X)、中介变量(M)、因变量(Y)对应的潜变量的项目得分合并取均值并中心化,见下图在这个图中,自变量(X)为工作不被认同,包含3个观测指标,即领导不认同、同事不认可、客户不认可;中介变量(M)焦虑包含3个观测指标即心跳、紧张、坐立不安;因变量(Y)包含2个观测指标即效率低和效率下降。DescriptiveStatistics工作不被认同焦虑工作绩效ValidN(listwise)N489489489489Mean2.08212.08592.2807上面三个图表示合并均值及中心化处理过程,生成3个对应的变量并中心化(项目均值后取离均差)得到中心化X、M、Y。第二步:按温忠麟中介检验程序进行第一步检验即检验方程y=cx+e中的c是否显著,检验结果如下表:ModelSummaryaPredictors:(Constant),不被认同(中心化)Coefficientsa.002.032.051.959.804.040.67820.354.000(Constant)不被认同(中心化)Model1BStd.ErrorUnstandardizedCoefficientsBetaStandardizedCoefficientstSig.DependentVariable:工作绩效(中心化)a.由上表可知,方程y=cx+e的回归效应显著,c值.678显著性为p.000,可以进行方程m=ax+e和方程y=c’x+bm+e的显著性检验;第三步:按温忠麟第二步检验程序分别检验a和b的显著性,如果都显著,则急需检验部分中介效应和完全中介效应;如果都不显著,则停止检验;如果a或b其中只有一个较显著,则进行sobel检验,检验结果见下表:ModelSummary.533a.284.283.76763.284193.2471487.000Model1RRSquareAdjustedRSquareStd.ErroroftheEstimateRSquareChangeFChangedf1df2Sig.FChangeChangeStatisticsPredictors:(Constant),不被认同(中心化)a.ModelRRSquareAdjustedRSquareStd.ErroroftheEstimateChangeStatisticsRSquareChangeFChangedf1df2Sig.FChange1.678(a).460.459.70570.460414.2651487.000Coefficientsa.001.035.034.973.597.043.53313.901.000(Constant)不被认同(中心化)Model1BStd.ErrorUnstandardizedCoefficientsBetaStandardizedCoefficientstSig.DependentVariable:焦虑(中心化)a.由上面两个表格结果分析可知,方程m=ax+e中,a值0.533显著性p.000,继续进行方程y=c’x+bm+e的检验,结果如下表:ModelSummary.702a.492.490.68485.492235.4902486.000Model1RRSquareAdjustedRSquareStd.ErroroftheEstimateRSquareChangeFChangedf1df2Sig.FChangeChangeStatisticsPredictors:(Constant),焦虑(中心化),不被认同(中心化)a.Coefficientsa.001.031.044.965.670.045.56414.773.000.225.040.2135.577.000(Constant)不被认同(中心化)焦虑(中心化)Model1BStd.ErrorUnstandardizedCoefficientsBetaStandardizedCoefficientstSig.DependentVariable: