Zeng,Dao-Zhi20073Tiebout••,,•TieboutIndividualswillcostlesslysortthemselvesacrosslocalcommunitiesaccordingtotheirpubliclocalpreferencesPerfectmobility•1•RhodeandStrumpf(2003)18501990Tiebout.,community.¶µ³´:Tiebout2•Ellickson(1971),Schmidheiny(2006):•Fujita(1989):+•CouchandDaly(2002),196750%,197430%,197480.900.60%¶µ³´:,?3••,•,••4•.,•,TabuchiandThisse(2002),Murata(2002).•,Glazer,GradsteinandRanjan(2003),• 5•Ottaviano(2001),ForslidandOttaviano(2003)•.•,.Region1Region2LL⇐⇒λxH(1−λx)HλyH(1−λy)H6Ui=(Xi)µ(Ai)1−µ=⇒U0i=(X0iY0i)µ2(A0i)1−µUxi=(Xxi)µη(Yxi)µ(1−η)(Axi)1−µUyi=(Xyi)µ(1−η)(Yyi)µη(Ayi)1−µ•Cobb-Douglas•Akitypeki•Xkitypekix•Ykitypekiy•0µ1•η•12η1=⇒typektypek7••CEStypekix,yXki=(∫s∈Ndkxi(s)σ−1σds)σσ−1,Yki=(∫s∈Ndkyi(s)σ−1σds)σσ−1,k∈{0,x,y}dkxi(s)(dkyi(s))itypek∈{0,x,y}x(y),σ,8ikjdkijType0sd0xji(s)=pxji(s)−σ`Pxi´1−σµ2I0i,d0yji(s)=pyji(s)−σ`Pyi´1−σµ2I0iPxi=»Zs∈nxipxii(s)1−σds+Zs∈nxjpxji(s)1−σds–11−σPyi=»Zs∈nyipyii(s)1−σds+Zs∈nyjpyji(s)1−σds–11−σTypex,y.,dkij(s)=d0kji(s)+dxkji(s)+dykji(s)9••,.1•0•pAi=w0i=110•xy,••:,type⇒nx1=λxNx,nx2=(1−λx)Nx,ny1=λyNy,ny2=(1−λy)Ny.•:1β•qTCi=wi+1×β×q•Πxi(s)=pxii(s)dxii(s)+pxij(s)dxij(s)−β[dxii(s)+τdxij(s)]−wi,Πyi(s)=pyii(s)dyii(s)+pyij(s)dyij(s)−β[dyii(s)+τdyij(s)]−wi.•⇒•,⇒0⇒xy,wi=β[dxii(s)+τdxij(s)]σ−1=β[dyii(s)+τdyij(s)]σ−111,wi=8:βσ−1xix,xiixβσ−1yiy,yiiyEx1=µ2L+w1λxHµη+w1λyHµ(1−η),Ey1=µ2L+w1λxHµ(1−η)+w1λyHµη,Ex2=µ2L+w2(1−λx)Hµη+w2(1−λy)Hµ(1−η),Ey2=µ2L+w2(1−λx)Hµ(1−η)+w2(1−λy)Hµη.x1=σ−1βσ„Ex1nx1+ϕnx2+ϕEx2ϕnx1+nx2«,x2=σ−1βσ„Ex2nx2+ϕnx1+ϕEx1nx1+ϕnx2«,y1=σ−1βσ„Ey1ny1+ϕny2+ϕEy2ϕny1+ny2«,y2=σ−1βσ„Ey2ny2+ϕny1+ϕEy1ny1+ϕny2«.12dλxdt=w1(Px1)µη(Py1)µ(1−η)−w2(Px2)µη(Py2)µ(1−η),dλydt=w1(Px1)µ(1−η)(Py1)µη−w2(Px2)µ(1−η)(Py2)µη.••λx∗=λy∗=12,nx∗1=nx∗2=ny∗1=ny∗2=H2•Ottaviano(2001)•13?•,,•,•,xy.14•λx=1,λy=0nx∗1=σ(1−ϕ)+(2η−1)µ(1+ϕ)2σ(1−ϕ)H,ny∗1=σ(1−ϕ)+[2(1−η)−1]µ(1+ϕ)2σ(1−ϕ)H.•„ϕσ−µ(2η−1)σ+µ(2η−1)«nx∗1∈„H2,H«,ny∗1∈„0,H2«•,nx∗1=N,ny∗1=0,•nx1η.,.•,,15•Krugman(1980)2•••.••1,2,xµηw∗1H+µ2w01Lµ(1−η)w∗1H+µ2w01Lnx∗1nx∗2.•:16•:•:1−µσ+σ+µσϕ2−2ϕσ−1−µσ−1≤0•η,ForslidandOttaviano(2003)•(No-black-hole):σ1+µ••,17-ϕσ−µ(2η−1)σ+µ(2η−1)dispersing rmsFS¾τ610λx,λy...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................nx1...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ny1FAyyyyyyyyyyyyyyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxxxxx18FA?FS?•coreofFAFSperipheryofFAFAFSTotal:FAFS•1.UrbanCosts2.3.•.19•••.20