当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.一个因素所包含的可能情况另一个因素所包含的可能情况两个因素所组合的所有可能情况,即n在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式P(A)=n/m中计算.列表法中表格构造特点:当一次试验中涉及3个因素或更多的因素时,怎么办?当一次试验中涉及3个因素或更多的因素时,用列表法就不方便了.为了不重不漏地列出所有可能的结果,通常采用“树状图”.树状图的画法:一个试验第一个因数第二个第三个如一个试验中涉及3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况,AB123123abababababab则其树状图如图.n=2×3×2=12二、学习目标:1、进一步理解等可能情形下的随机事件的概率。2、会用列举法(列表、画树状图)计算随机事件的概率。三、自学提纲:看书94-97页,完成以下问题1、看懂例5、例6、例7.2、完成97页练习1、2、3.1、同时抛掷三枚硬币,求下列事件的概率:(1)三枚硬币全部正面朝上;(2)两枚硬币正面朝上而一枚硬币反面朝上;(3)至少有两枚硬币正面朝上.正反正反正反正反正反正反正反抛掷硬币试验解:由树状图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.∴P(A)(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种18=∴P(B)38=(2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种∴P(C)48=12=第①枚②③四、合作探究:2、甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C.D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I,从3个口袋中各随机地取出1个小球.(2)取出的3个小球上全是辅音字母的概率是多少?(1)取出的3个小球上,恰好有1个,2个和3个元音字母的概率分别是多少?取球试验甲乙丙ABCDECDEHIHIHIHIHIHI解:由树状图可以看出,所有可能的结果有12种,它们出现的可能性相等.∴P(一个元音)=(1)只有1个元音字母结果有5个512∴P(两个元音)=有2个元音字母的结果有4个41213=∴P(三个元音)=全部为元音字母的结果有1个112∴P(三个辅音)=(2)全是辅音字母的结果有2个16=212AEEIIIIII3、甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用“石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头”“剪刀”“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”.问一次比赛能淘汰一人的概率是多少?石剪布石游戏开始甲乙丙石石剪布石剪布石剪布石剪布石剪布石剪布石剪布石剪布剪布石剪布石剪布剪布解:由树形图可以看出,游戏的结果有27种,它们出现的可能性相等.由规则可知,一次能淘汰一人的结果应是:“石石剪”“剪剪布”“布布石”三类.而满足条件(记为事件A)的结果有9种∴P(A)=13=9274、有一个密码箱,它的密码由2个数字组成,每个数字都可以从0到9的10个数字中任选一个,(1)问这样组成的密码有多少种不同的可能结果?而密码的主人设定的密码只有多少种结果?不知道密码的人任意拨2个数字,能打开密码箱的概率是多少?(2)如果密码由3个数字组成呢?5、两人要去风景区游玩,仅知道每天开往风景区有3辆车,并且舒适程度分为上、中、下等3种,而不知道怎样区分这些车,也不知道它们回忆怎样的顺序开来。于是他们分别采取了不同的乘车方法;甲乘第1辆开来的车,乙不乘第1辆车并且仔细观察第2辆车的情况:如比第1辆好,就乘第2辆车,如不比第1辆车好就乘第3辆车。试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适度较好的车?1.在6张卡片上分别写有1~6的整数,随机的抽取一张后放回,再随机的抽取一张,那么,第一次取出的数字能够整除第2次取出的数字的概率是多少?2.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,当有三辆汽车经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.五、练习巩固1.在6张卡片上分别写有1~6的整数,随机地抽取一张后放回,在随机地抽取一张。那么第二次取出的数字能够整除第一取出的数字的概率是多少?6,66,56,46,36,26,15,65,55,45,35,25,14,64,54,44,34,24,13,63,53,43,33,23,12,62,52,42,32,22,11,61,51,41,31,21,1654321654321第2个第1个1873614)(AP第一辆左右左右左直右第二辆第三辆直直左右直左右直左直右左直右左直右左直右左直右左直右左直右左直右共有27种行驶方向2、解:画树状图如下:271()1(全部继续直行)P19(2)(3)7273.用数字1、2、3,组成三位数,求其中恰有2个相同的数字的概率.1231组数开始百位个位十位12312312323123123123123123123123123解:由树形图可以看出,所有可能的结果有27种,它们出现的可能性相等.其中恰有2个数字相同的结果有18个.∴P(恰有两个数字相同)=182723=4.把3个不同的球任意投入3个不同的盒子内(每盒装球不限),计算:(1)无空盒的概率;(2)恰有一个空盒的概率.123盒1投球开始球①球③球②123123123盒2盒3123123123123123123123123解:由树状图可以看出,所有可能的结果有27种,它们出现的可能性相等.∴P(无空盒)=(1)无空盒的结果有6个62729=(2)恰有一个空盒的结果有18个∴P(恰有一个空盒)=182723=5、用下图所示的转盘进行“配紫色”游戏,游戏者获胜的概率是多少?刘华的思考过程如下:随机转动两个转盘,所有可能出现的结果如下:开始灰蓝(灰,蓝)绿(灰,绿)黄(灰,黄)白蓝(白,蓝)绿(白,绿)黄(白,黄)红蓝(红,蓝)绿(红,绿)黄(红,黄)你认为她的想法对吗,为什么?总共有9种结果,每种结果出现的可能性相同,而能够配成紫色的结果只有一种:(红,蓝),故游戏者获胜的概率为1∕9。用树状图或列表法求概率时,各种结果出现的可能性务必相同。六、小结:这节课你有什么收获?七、布置作业:课堂作业:必做题:97页练习2、3.选做题:97页习题2课外作业:1、97页习题1,32、一个家庭有三个孩子,若一个孩子是男孩还是女孩的可能性相同.(1)求这个家庭的3个孩子都是男孩的概率;(2)求这个家庭有2个男孩和1个女孩的概率;(3)求这个家庭至少有一个男孩的概率.