实际问题的二次函数应用桥拱

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

26.3实际问题与二次函数(3)解一解二解三探究3图中是抛物线形拱桥,当水面在时,拱顶离水面2m,水面宽4m,水面下降1m时,水面宽度增加了多少?l继续解一以抛物线的顶点为原点,以抛物线的对称轴为轴,建立平面直角坐标系,如图所示.y∴可设这条抛物线所表示的二次函数的解析式为:2axy当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)22a25.0a∴这条抛物线所表示的二次函数为:2x5.0y当水面下降1m时,水面的纵坐标为y=-3,这时有:2x5.036xm62这时水面宽度为∴当水面下降1m时,水面宽度增加了m)462(返回解二如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m即:抛物线过点(2,0)22a025.0a∴这条抛物线所表示的二次函数为:2x5.0y2当水面下降1m时,水面的纵坐标为y=-1,这时有:2x5.0126xm62这时水面宽度为∴当水面下降1m时,水面宽度增加了m)462(∴可设这条抛物线所表示的二次函数的解析式为:2axy2此时,抛物线的顶点为(0,2)返回解三如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:2)2x(ay2∵抛物线过点(0,0)2)2(a025.0a∴这条抛物线所表示的二次函数为:2)2x(5.0y2当水面下降1m时,水面的纵坐标为y=-1,这时有:2)2x(5.01262x,62x21m62xx12∴当水面下降1m时,水面宽度增加了m)462(此时,抛物线的顶点为(2,2)∴这时水面的宽度为:返回例:某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.解:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵AB=4∴A(-2,0)B(2,0)∵OC=4.4∴C(0,4.4)设抛物线所表示的二次函数为4.4axy2∵抛物线过A(-2,0)04.4a41.1a∴抛物线所表示的二次函数为4.4x1.1y27.2816.24.42.11.1y2.1x2时,当∴汽车能顺利经过大门.小结一般步骤:(1).建立适当的直角系,并将已知条件转化为点的坐标,(2).合理地设出所求的函数的表达式,并代入已知条件或点的坐标,求出关系式,(3).利用关系式求解实际问题.2.一场篮球赛中,球员甲跳起投篮,如图2,已知球在A处出手时离地面20/9m,与篮筐中心C的水平距离是7m,当球运行的水平距离是4m时,达到最大高度4m(B处),设篮球运行的路线为抛物线.篮筐距地面3m.①问此球能否投中?1.有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿底部宽AB为4m,高OC为3.2m;集装箱的宽与车的宽相同都是2.4m;集装箱顶部离地面2.1m。该车能通过隧道吗?请说明理由.(选做)②此时对方球员乙前来盖帽,已知乙跳起后摸到的最大高度为3.19m,他如何做才能盖帽成功?作业:

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功