论述:1试说明普氏、太沙基地压计算理论,并给予评价。答:普氏认为:顶板岩石受力作用可形成平衡拱(免压拱),使上覆岩层压力通过拱轴转移到两侧围岩上,当两侧围岩稳定时,巷道支架仅承受平衡拱内岩石的重力作用。两帮岩体受拱传递压力作用,产生较大变形,当达到其强度时,两帮岩体将滑移,失去支撑作用,致使拱宽、拱高加大,顶压与侧压增大。太沙基认为:跨度为2a范围内的上部岩石将由于自重而下沉,两侧摩擦力阻止其下沉,支架所承受的压力为下滑力与摩擦力之差。评价:两种计算方法均为估算法。普氏地压公式与深度无关,不能解释应力随深度增大的现象;适用于松散岩体,对整体性、强度高的岩体,计算结果与实际有出入;应用简便(估算)、存在局限性。太沙基公式从另一角度提出地压计算公式,也反映了免压拱效应,经变换后与普式公式同形。适用于埋深不大、围岩松散破碎条件。2分析库仑、莫尔、格里菲斯强度理论的基本观点并给予评价。答:库仑认为:岩石破坏为剪切破坏;岩石抵抗剪切破坏的能力由两部分组成:内聚力、内摩擦力。莫尔认为:无论岩石处于何种应力状态,破坏均为剪切破坏;破坏时,剪切面上所需的剪应力不仅与岩石性质有关,而且与作用在剪切面上的正应力有关。格里菲斯认为:不论岩石受力状态如何,最终在本质上都是拉伸应力引起岩石破坏。评价:库仑强度理论是莫尔强度理论的直线形式。莫尔理论较好解释了岩石抗拉强度远远低于抗压强度特征,解释了三向等拉时破坏,三向等压时不破坏现象,但忽视了中间应力的作用。格式理论推导岩石抗压强度为抗拉强度的8倍,反映了岩石的真实情况,较好证明了岩石在任何应力状态下都是由于拉伸引起破坏,但对裂隙被压闭合抗剪强度增高解释不够。莫尔理论适用于塑性岩石,及脆性岩石的剪切破坏;不适用于拉断破坏。格式理论适用于脆性岩石及材料破坏。3从岩石力学的角度分析岩质边坡病害的发生机理和研究方法。答:机理:○1崩塌:块状岩体与岩坡分离,向前翻滚而下。其成因是由于风化等原因减弱了节理面的内聚力或也可能是由于气温变化、冻融松动岩石的结果,或是由于植物根系生长造成膨胀压力,以及地震、雷击等原因而引起;○2滑坡:岩体在重力作用下,沿坡内软弱结构面产生的整体滑动。其成因是由于岩体中存在有软弱结构面(层面、断层、裂隙),岩体在重力的作用下,克服了滑面底部与两侧的阻力而引起沿软弱面的滑动。滑面的倾角必须大于滑面的内摩擦角,否则无论坡角和坡高大小如何,边坡都不会滑动。研究方法:极限平衡法、数值分析法、有限单元法等。4、从基本特征、物理性质、力学性质、赋存环境等角度讨论岩体、岩石的区别。答:基本特征:岩体:不连续性、非均匀性、各向异性、有条件转化性;岩石:是一种地质材料,是组成岩体的固相基质,是连续、均匀、各向同性或正交各向同性的力学介质。物理性质:岩体:结构面产状、结构面组数、结构面间距、延展性、粗糙程度、风化程度、张开度、充填特性、渗流、块体尺寸;岩石:重力特征、空隙性、吸水性、透水性、可溶性、膨胀性、崩解性、软化性、抗冻性、碎胀性、压实性、热(力)学性质等。力学性质:岩体:法向压缩变形、岩体抗拉强度、岩体的抗剪强度、岩体的剪切变形;岩石:为抵抗外力而维持自身稳定和平衡所表现出来的性质,包括变形性质和破坏性质。赋存环境:岩体:地应力场、温度场、渗流场、其它物理场;岩石:没有赋存环境简答:1简述结构面定量统计的内容?答:(1)产状(结构面的空间分布状态);(2)组数(岩体中交叉分布的结构面组数);(3)间距(同组结构面法线方向上该组结构面的平均距离);(4)延展性(在一个暴露面上能看见的结构面迹线的长度);(5)粗糙程度(结构面的固体表面相对与它的平均平面的凹凸不平程度);(6)结构面壁的抗压强度(结构面两侧岩壁的等效抗压强度);(7)张开度(结构面两壁间的垂直距离,除水和空气外壁间无填充物);(8)充填特征(硬性结构面、软弱结构面);(9)渗流特征(结构面中是否存在渗流及渗流量);(10)块体尺寸。2格里菲思准则的基本思想及假。基本思想:材料内部存在着许多细微裂隙,在力的作用下,这些细微裂隙的周围,特别是缝端,可以产生应力集中现象。材料的破坏往往从缝端开始,裂缝扩展,最后导致材料的完全破坏。假定:1、物体内部随机分布许多裂隙。2、所有裂隙都张开,独立。3、裂隙短命呈扁平椭圆状态4、在任何应力状态下,裂隙尖端产生拉应力集中,导致裂隙沿着某个有利方向进一步扩展。5、最终在本质上都是拉应力引起的岩石破坏。修正:考虑裂隙间的摩擦条件。3.扩容现象的解释:扩容分3个阶段:①轴向应力ζ1较小时,岩石符合线弹性材料的性状,体积应变是具有正斜率的直线,这是由于ε1|ε2+ε3|,即体积随压力的增加而减小。②当应力大约达到强度的一半时,体积应变开始偏离线弹性材料的直线,随着应力的增高,这种偏离的程度也越来越大。③在接近破裂时,偏离的程度变得很大,使得岩石在压缩阶段的体积超过其原来的体积,产生负的压缩体积压缩体积应变,即扩容。4.塑性松动圈的形成过程:ζθ与初始应力p0成正比,而初始应力又随着深度z成比例的增大,当洞室很深是,z很大,则p0=rz也就很大,ζθ也随之增大,而ζr变化不大,在洞壁上为0,①ζθRc时,洞室周围开始破裂。②应力差ζθ-ζr达到某一极限值ζ0时,洞壁岩石进入塑性平衡状态,产生塑性变形。③洞室周边破坏后,该处围岩的应力降低,加之新开裂处岩体在水和空气影响下加速风化,岩体向洞内产生塑性松胀。④塑性松胀使得原来由洞边附近岩石承受的应力转移一部分给邻近的岩体,邻近岩体也产生塑性变形。⑤应力足够大时,塑性变形的范围是向围岩深部逐渐扩展的,使得洞室周围形成一个圈,即塑性松动圈。5.新奥法的基本原理:应用岩石力学的基本理论,以维护和利用围岩的自承能力为基点,采用锚杆和喷射混凝土为主要手段,及时进行支护,控制围岩的变形和松弛,使围岩成为支护体的组成部分,并通过对围岩和支护的量测、监控来指导隧道和地下工程设计施工的方法和原则。6.崩塌和滑坡的区别和联系:①崩塌发生之后,崩塌物常堆积在山坡脚,呈锥形体,结构零乱,毫无层序,而滑坡堆积物常具有一定的外部形状,整体性较好。②崩塌体完全脱离土体;滑坡体很少完全脱离土体。③崩塌发生后,崩塌物的垂直位移量远大于水平位移量,重心位置降低了许多;滑坡体的水平位移量大于垂直位移量,重心位置降低不多。④崩塌堆积物表面不见裂缝分布;而滑坡体表面,尤其是新发生的滑坡体表面,具有很多一定规律的纵横裂缝。7、什么是全应力应变曲线?为什么普通材料试验机得不出全应力应变曲线?答:在单轴压缩下,记录岩石试件被压破坏前后变形过程的应力应变曲线。普通材料实验机整体刚度相对较小,对试件施加载荷产生的反作用力将使实验机构件产生较大变形(弹性能储存),当岩石试件被压坏时,试件抗压能力急剧下降,致使实验机弹性变形迅速恢复(弹性能释放)摧毁岩石试件,而得不到岩石破坏后的应力应变曲线。刚性实验机在施加载荷时,自身变形极小,储存的弹性能不足以摧毁岩石试件,因此可以得到岩石破坏后的应力应变曲线。8、简述岩石在三轴压缩下的变形特征。答:E、μ与单轴压缩基本相同;随围压增加——三向抗压强度增加;峰值变形增加;弹性极限增加;岩石由弹脆性向弹塑性、应变硬化转变。9、按结构面成因,结构面通常分为几种节理类型?答:按成因分类有三种类型:①原生节理——成岩阶段形成的结构面;②构造节理——在构造运动作用下形成的结构面;③次生节理——由于风化、人为因素影响形成的结构面。10、简述水压致裂法主要测量步骤及适用条件。答:(1)打孔到测量应力的部位,将加压段用封隔器密封;(2)向隔离段注入高压水,测得岩体初始开裂压力Pi;(3)把高压水释放后重新加压,测得压力Pr和稳定关闭压力Ps,重复2—3次;(4)将封隔器完全卸压后连同加压管等全部设备从钻孔中取出;(5)测量水压裂隙和钻孔试验段的天然节理、裂隙的位置、方向和大小,做好记录。适用于:完整、脆性岩石。11.简述斜坡中应力分布特点:(1)斜坡周围主应力迹线发生明显偏转:愈接近临空面,最大主应力ζ1愈接近平行于临空面,ζ3与之正交,向坡内逐渐恢复到原始状态。(2)坡脚附近形成最大剪应力增高带,往往产生与坡面或坡底面平行的压致拉裂面。(3)在坡顶面和坡面的某些部位,坡面的径向应力和坡顶面的切向力可转化为拉应力,形成张力带,易形成与坡面平行的拉裂面。(4)与主应力迹线偏转相联系,坡体内最大剪应力迹线由原来的直线变成近似圆弧线,弧的下凹方向朝着临空方向。(5)坡面处由于侧向压力趋于零,实际上处于两向受力状态,而向坡内逐渐变为三向受力状态。12石蠕变一般包括哪几个阶段?各阶段有何特点?答:(1瞬时变形阶段:加荷后立即发生变形)2瞬态蠕变阶段:应变在最初随时间增长较快,但其增长速率随时间逐渐降低。3稳定蠕变阶段:应变随时间呈近似直线的增长。4非稳态蠕变阶段;应变及应变速率均随时间增长而增长,表明变形加速直至破坏。13岩石的塑性和流变性有什么不同?答:塑性指岩石在高应力(超过屈服极限)作用时,产生不可恢复变形的性质。流变性指岩石在任何应力作用下,随时间增长而产生的不可恢复的变形。相同点:均为不可恢复变形;不同点:变形产生的原因、机理不同。14简述岩体的工程地质分类与质量分级的区别和联系。答:区别:根本区别在于服务对象。分类的服务对象:工程地质和岩体力学工作者,着重解决一般问题,一般不涉及具体工程;分级的服务对象:岩体工程的设计和施工人员,直接为具体岩体工程的设计和施工服务。联系:岩体的工程地质分类必须以岩体质量为基础,是工程岩体质量分级的归宿;而岩体质量分级也是岩体工程地质分类的深化和发展,属于岩体工程地质分类范畴。15简述岩体力学性质的影响因素。答:岩体力学性质影响因素有两个方面:1、岩体的内在因素即岩石的成分、结构及岩性、岩体结构;2、外部条件即地下水、地应力、地热及作用力特点。名词解释:12.岩体:位于一定地质环境中,在各种宏观地质界面(断层、节理、破碎带等)分割下形成的有一定结构的地质体。由结构面与结构体组成的地质体。13.岩石:是经过地质作用而天然形成的一种或多种矿物的集合体。具有一定结构构造的矿物(含结晶和非结晶的)集合体。14岩(体)石力学:是力学的一个分支学科,是研究岩(体)石在各种力场作用下变形与破坏规律的理论及其实际应用的一门基础学科。15.结构面:指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。16.软化性:软化性是指岩石浸水饱和后强度降低的性质。17.软化系数:指岩石试件的饱和抗压强度与干燥状态下的抗压强度的比值。18.膨胀性:是指岩石浸水后体积增大的性质。19.单轴抗压强度:是指岩石试件在单轴压力下达到破坏的极限值。,20.抗拉强度:是指岩石试件在单向拉伸条件下试件达到破坏的极限值。21.抗剪强度:是指岩石抵抗剪切破坏的能力。22.尺寸效应:岩石试件的尺寸愈大,则强度愈低,反之愈高,这一现象称为“尺寸效应”。23.流变性:指在外界条件不变时,岩石应变或应力随时间而变化的性质。24.蠕变:指在应力不变的情况下,岩石的变形随时间不断增长的现象。25.应力松弛:是指当应变不变时,岩石的应力随时间增加而不断减小的现象。26.弹性后效:是指在加荷或卸荷条件下,弹性应变滞后于应力的现象。27.峰值强度:若岩石应力—应变曲线上出现峰值,峰值最高点的应力称为峰值强度。28.长期强度:指长期荷载(应变速率小于10-6/s)作用下岩石的强度。29.扩容:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破裂或微裂纹继续发生和扩展,岩石的体积应变增量由压缩转为膨胀的力学过程,称之为扩容。31.脆性破坏:是指岩石在破坏前变形很小,出现急剧而迅速的破坏,且破坏后应力降很大。32.延性破坏:是指岩石在破坏前发生了较大的永久塑性变形,并且破坏后应力降很小。33.塑性变形:在外力撤去后不能够恢复的变形。34.岩体完整性指标:是指岩体弹性纵波与岩石弹性纵波之比的平方。35.岩体基本质量:岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量