TL494实现单回路控制器及引脚功能详解本文介绍了以电压驱动型脉宽调制控制集成电路TL494为核心元件并加上简单滤波电路及RC放电回路所构成的回路控制器。它能把脉冲宽度变化的信号转换成与脉冲宽度成正比变化的直流信号,进而实现闭环单回路控制。TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。1TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。2回路控制器工作原理回路控制器的方框图如图2所示。被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。2.1输入电路两个运算放大器IC1A、IC1B都接成有源简单二阶低通滤电路,分别作为反馈信号输入和设定信号输入的处理电路。在电路设计上,两个输入电路采取完全对称的形式。将有源简单二阶低通滤波电路的截止频率fp设计为4Hz,根据有源简单二阶低通滤波电路中fp=0.37f0(f0为该滤波器的特征频率)选取C1与C2为1μF,然后算得R1与R2为16kΩ。这样可以滤除由于传感器距离较远输入引线过长而带来的高频杂波干扰和平滑传感器信号本身的波动,使加入到TL494的管脚1即误差放大器I同相输入端IN+的信号尽可能地平滑和相对稳定。在有源简单二阶低通滤波电路与误差放大器I同相输入端IN+之间接有10kΩ的限流隔离电阻。把TL494的14脚输出的5V基准电压源,用一3.3kΩ精密多圈电位器W1分压作为设定输入信号,通过与处理传感器反馈信号相同的电路,送入TL494的管脚2,即误差放大器I的反相输入端IN-端。实验中发现,R19、R20这两个限流隔离电阻必不可少。否则,TL494误差放大器I的两个输入端的电位将相互影响。另外,实验数据还表明,TL494误差放大器的两个输入端在低电压时跟踪的线性不大好,故这里将两个输入运算放大器的放大倍数取为2,以改善反馈信号与设定信号的跟踪线性。用TL494实现的单回路控制器的电路原理图如图3所示。2.2脉宽调制电路在本控制器中只用到了TL494的误差放大器I,故将误差放大器II的IN+(16脚)接地、IN-(15脚)接高电平。为保护TL494的输出三极管,经R13和R10分压,在4脚加接近0.3V的间歇调整电压。R9、R12和C5组成了相位校正和增益控制网络。经过实验,在本控制器中振荡电阻和振荡电容分别取200kΩ和0.1μF。输出采用并取方式,取自发射级。整机电源取12V单电源。2.2输出电路为了把脉宽变化的方波信号转换为大小变化的直流信号,通过开关二极管D1、电容C8进行整流滤波。R15作为整波滤波的输出负载,还在脉冲截止期间为C8提供放电回路,使C8上的电压与TL494输出的脉宽成正比。为使输出电压进一步平滑、提高带负载能力以及使输出电压在0~10V之间变化,又加入了一级压控电压源二阶低通滤波电路。在图中所示元件参数下,最大的直流输出电压是10V,IC3A输出端接的10V稳压二极管,是保证在意外的情况下,使输出电压不大于10V。3工作过程当反馈信号大于设定值时,通过TL494的脉宽调制作用,其9脚与10脚并联输出信号的脉宽减小,这个输出信号再经整流滤波电路及隔离与放大输出电路,使最后输出的直流控制信号的电压相应下降。直流控制信号通过控制电路经执行机构(如电动机、电热管等)使被控制量下降,再进而通过传感器使反馈信号降低,形成单回路闭环控制。当反馈信号小于设定值时,上述控制过程相反。另外,还可以根据被控制系统的具体情况,来调整输入二阶低通滤波器的电容大小,使控制过程及时、准确、稳定。再有,为使控制过程直观,还应加上设定量及被控制量的显示(指示)电路。可从两个输入端取出信号,然后分别通过隔离放大电路(如用运算放大器组成的电压跟随器)送到表头指示。表头可采用多功能数字式电子表头成品或直接用满量程5V的机械表示。4实测数据分析表1~表3的数据是在输出端接10kΩ负载电阻的开环条件下用DT9102A型数字万用表测得的。其中反馈信号及设定信号分别用精密多圈电位器对标准5V基准源分压来模拟,并且测量点取自IC1A及IC1B的输出端即IC1的1脚和7脚,输出取自IC3A的1脚。所有单位均为伏。表1开环的条件下实测数据组1设定(V)1.0211.0231.0221.0211.0201.0191.0181.0161.0151.0121.010反馈(V)1.2521.2401.2271.0271.1861.1621.1371.1131.0901.0641.008输出(V)0.011.081.993.014.005.006.097.008.009.009.96表2开环的条件下实测数据组2设定(V)2.032.032.032.032.032.032.022.022.022.022.02反馈(V)2.182.162.152.132.112.082.062.042.011.991.96输出(V)0.010.992.033.004.015.096.107.018.009.009.62表3开环的条件下实测数据组3设定(V)3.033.033.033.033.033.033.033.033.033.033.03反馈(V)3.103.093.073.033.033.012.982.962.932.912.83输出(V)0.011.032.003.054.025.076.027.017.999.049.92对实际的回路控制器电路测量了多组数据,限于篇幅仅更出以上三级数据。从测得的数据分析,我们可看出,在开环条件下该控制器的反馈信号的动态范围很小,仅在±0.225V范围内。当构成闭环联回路控制时,合理的控制系统中(执行机构的最大输出稳定值应为最大设定值的1.1至1.2倍),可以得出反馈量与设定量一定有一个动态平衡值,且在该平衡值睛,反馈量与设定量的一致性应非常好。也就是说,该控制器的控制灵敏度和控制精度都很高。经实际应用,证明了以上的分析。该控制器的控制灵敏度和控制精度都很高,可完全取代一些成本高、电路复杂的单回路控制器。综上所述,用TL494为主要元件实现的闭环单回路控制器具有构思新颖、电路简单、成本低廉以及控制过程稳定等特点,在很多工业控制场合可获得广泛的应用。开关电源控制器TL494/KA7500/MB3759类别:电源技术阅读:3009TL494,KA7500,MB3759是一种固定频率脉宽调制电路,包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。(1)特性TL494,KA7500、MB3759的引脚功能完全相同,可以直接互相代换。TL494,KA7500,MB3759的主要特性如下:集成了全部的脉宽调制电路;片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容);可调整死区时间;置功率晶体管可提供500mA的驱动能力;推或拉两种输出方式。TL494、KA7500,MB3759内部有5V基准电源、锯齿波发生器、误差放大器、死区控制器、输出控制逻辑和输出三极管等电路。其中输出三极管可接成共发射极和射极跟随器两种方式,因而可以选择双端推挽输出或单端输出方式,在推挽输出方式时,它的两路驱动脉冲相差180°,而在单端方式时,其两路驱动脉冲为同频同相。(2)内部电路与引脚功能TL494,KA7500,MB3759内部有SO-16和PDIP-16两种封装形式,以适应不同场合的要求TL494,KA7500,MB3759的内部电路框图如图所示,各引脚功能见表。(3)应用电路TL494,KA7500,MB3759是一个固定频率的脉冲宽度调制电路,内置线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率tosc=1.1RT·CT。输出脉冲的宽度通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门,双稳触发器的时钟信号为低电平时,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大时,输出脉冲的宽度将减小。控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输人端。死区时间比较器具有120mV的输人补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。把死区时间控制输人端接上固定的电压(范围在0~33V之间)即可在输出脉冲上产生附加的死区时间。TL494,KA7500,MB3759适合应用在DVD、机顶盒、显示器、电视机及传真机,ATX电源、传真机电源适配器、逆变器等电路中。TL494,KA7500,MB3759的典型应用电路如图所示。基于MOSFET控制的PWM型直流可调电源的研制摘要:由于仪器所用电源的体积和重量通常受到限制,为此提出一种由MOSFET控制,并且由高频变压器隔离的开关电源设计方法。该电源具有体积小、重量轻、抗干扰性能强,输出电压稳定,调压范围广,电压动态响应快,性价比高,使用方便等特点。关键词:PWM;MOSFET;驱动模块引言功率场效应管MOSFET是一种单极型电压控制器件,它不但具有自关断能力,而且具有驱动功率小,关断速度快等优点,是目前开关电源中常用的开关器件。采用MOSFET控制的开关电源具有体积小、重量轻、效率高、成本低的优势,因此,较适合作仪器电源。本文给出了一种由MOSFET控制的大范围连续可调(0~45V)的小功率稳压电源设计实例。总体结构与主电路图1为该电源的总体结构框图。工作原理如下:图1原理方框图全桥整流电路将电网电压220V整流成不可调的直流电压Ud=1.2U约等于198V。两个等值滤波电容上的电压分别为99V以上,经DC/AC变换器逆变之后输出20kHz、脉宽可调的交流电压,又经高频变压器的两个副边分正负半周送入整流滤波电路,输出直流电压。该电源直流输出电压的大小靠PWM发生器的输出脉冲宽度来控制。主电路如图2所示。图2主电路主电路中实现DCPAC变换的关键元件是功率场效应管VT1和VT2。当VT1管开通,VT2截止时,电路中的电流从电容C1正极到VT1的D1-S1,再通过变压器原边回到电容器C1的负极形成回路,uAB为正电压。变压器的副边感应电压同名端为正,VD1导通,输出U0上正下负。当VT2开通,VT1关断时,同样可推出上述结论:U0上正下负。U0的大小取决于控制电路使VT1、VT2的导通时间。PWM的控制原理脉宽PWM波形产生采用功能强大的TL494定频调制芯片,该芯片有16个引脚,内部电路与外围电路如图3示。图3