28.2.2解直角三角形应用(上课)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

解直角三角形应用举例事实上,在直角三角形的五个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.ABabcC解直角三角形:在直角三角形中,由已知元素求未知元素的过程.在解直角三角形的过程中,一般要用到下面一些关系:解直角三角形(2)两锐角之间的关系∠A+∠B=90°(3)边角之间的关系caAA斜边的对边sincbBB斜边的对边sincbAA斜边的邻边coscaBB斜边的邻边cosbaAAA的邻边的对边tanabBBB的邻边的对边tan(1)三边之间的关系222cba(勾股定理)ABabcC在解直角三角形的过程中,一般要用到下面一些关系:例4:2008年10月15日“神舟”7号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点.·OQFPα如图,⊙O表示地球,点F是飞船的位置,FQ是⊙O的切线,切点Q是从飞船观测地球时的最远点.的长就是地面上P、Q两点间的距离,为计算的长需先求出∠POQ(即a)PQPQPQ例题解:在图中,FQ是⊙O的切线,△FOQ是直角三角形.95.035064006400cosOFOQa18a∴PQ的长为6.200964014.3640018018当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约2009.6km·OQFPα利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题;(画出平面图形,转化为解直角三角形的问题)2.根据条件的特点,适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.铅垂线水平线视线视线仰角俯角在进行观察或测量时,仰角和俯角从上往下看,视线与水平线的夹角叫做俯角.从下向上看,视线与水平线的夹角叫做仰角;例4:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)分析:我们知道,在视线与水平线所成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,在图中,a=30°,β=60°Rt△ABC中,a=30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.ABCDαβ仰角水平线俯角解:如图,a=30°,β=60°,AD=120.ADCDADBDatan,tan30tan120tanaADBD3403312060tan120tanADCD312031203120340CDBDBC1.2773160答:这栋楼高约为277.1mABCDαβ1.建筑物BC上有一旗杆AB,由距BC40m的D处观察旗杆顶部A的仰角54°,观察底部B的仰角为45°,求旗杆的高度(精确到0.1m)ABCD40m54°45°ABCD40m54°45°解:在等腰三角形BCD中∠ACD=90°BC=DC=40m在Rt△ACD中tanACADCDCtanACADCDCtan54401.384055.2所以AB=AC-BC=55.2-40=15.2答:棋杆的高度为15.2m.练习2.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m,∠D=50°,那么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)50°140°ABCED∴∠BED=∠ABD-∠D=90°cosDEBDEBDcosDEBDEBDcos505200.64520332.8答:开挖点E离点D332.8m正好能使A,C,E成一直线.解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角1.数形结合思想.方法:把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,构造出直角三角形.思想与方法2.方程思想.3.转化(化归)思想.例5.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)65°34°PBCA•指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.•如图:点A在O的北偏东30°•点B在点O的南偏西45°(西南方向)30°45°BOA东西北南方位角例5如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?解:如图,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈80×0.91=72.8在Rt△BPC中,∠B=34°PBPCBsin23.130559.08.7234sin8.72sinBPCPB当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.65°34°PBCA气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的B点生成,测得.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60°方向继续移动.以O为原点建立如图12所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为A点)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?1006kmOBx/kmy/km北东AOBC图12解:(1)(10031003)B,(10032001003)C,(2)过点C作于点D,如图2,则CDOA1003CD在中RtACD△30ACD1003CD3cos302CDCA200CA200206305611台风从生成到最初侵袭该城要经过11小时.60x/kmy/kmAOBC图2D例4.海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?BADF60°1230°BADF解:由点A作BD的垂线交BD的延长线于点F,垂足为F,∠AFD=90°由题意图示可知∠DAF=30°设DF=x,AD=2x则在Rt△ADF中,根据勾股定理222223AFADDFxxx在Rt△ABF中,tanAFABFBF3tan3012xx解得x=666310.4AFx10.48没有触礁危险30°60°解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角a和大坝的坡面长度l,就能算出h=lsina,但是,当我们要测量如图所示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度l化整为零,积零为整,化曲为直,以直代曲的解决问题的策略与测坝高相比,测山高的困难在于;坝坡是“直”的,而山坡是“曲”的,怎样解决这样的问题呢?hhααll我们设法“化曲为直,以直代曲”.我们可以把山坡“化整为零”地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长l1,测出相应的仰角a1,这样就可以算出这段山坡的高度h1=l1sina1.在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,…,hn,然后我们再“积零为整”,把h1,h2,…,hn相加,于是得到山高h.hαl以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容.例6.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和β;(2)坝顶宽AD和斜坡AB的长(精确到0.1m)BADFEC6mαβi=1:3i=1:1.5解:(1)在Rt△AFB中,∠AFB=90°tan11.5AFiBF:33.7在Rt△CDE中,∠CED=90°tan1:3DEiCE18.41.在解直角三角形及应用时经常接触到的一些概念(方位角;坡度、坡角等)2.实际问题向数学模型的转化(解直角三角形)利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功