导数在研究函数中的应用(2)孙学军aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0复习:函数单调性与导数关系如果在某个区间内恒有,则为常数.0)(xf)(xf设函数y=f(x)在某个区间内可导,f(x)增函数f(x)减函数巩固:定义域R,f′(x)=x2-x=x(x-1)令x(x-1)0,得x0或x1,则f(x)单增区间(-∞,0),(1,+∞)令x(x-1)0,得0x1,f(x)单减区(0,2).注意:求单调区间:1:首先注意定义域,2:其次区间不能用(U)连接(第一步)解(第二步)(第三步)单调区间27x21-x31f(x)23yxOabyf(x)x1f(x1)x2f(x2)x3f(x3)x4f(x4)在x1、x3处函数值f(x1)、f(x3)与x1、x3左右近旁各点处的函数值相比,有什么特点?f(x2)、f(x4)比x2、x4左右近旁各点处的函数值相比呢?观察图像:一、函数的极值定义设函数f(x)在点x0附近有定义,•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);•如果对X0附近的所有点,都有f(x)f(x0),则f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0);oxyoxy0x0x◆函数的极大值与极小值统称为极值.(极值即峰谷处的值)使函数取得极值的点x0称为极值点yxO探究:极值点处导数值(即切线斜率)有何特点?结论:极值点处,如果有切线,切线水平的.即:f(x)=0abyf(x)x1x2x3f(x1)=0f(x2)=0f(x3)=0思考;若f(x0)=0,则x0是否为极值点?xyO分析yx3是极值点吗?)(处,在,得由0,00'03)(',)(23xfxxxfxxf进一步探究:极值点两侧函数图像单调性有何特点?极大值极小值即:极值点两侧单调性互异f(x)0yxOx1abyf(x)极大值点两侧极小值点两侧f(x)0f(x)0f(x)0探究:极值点两侧导数正负符号有何规律?x2xXx2x2Xx2f(x)f(x)xXx1x1Xx1f(x)f(x)增f(x)0f(x)=0f(x)0极大值减f(x)0f(x)=0增减极小值f(x)0注意:(1)f(x0)=0,x0不一定是极值点(2)只有f(x0)=0且x0两侧单调性不同,x0才是极值点.(3)求极值点,可以先求f(x0)=0的点,再列表判断单调性结论:极值点处,f(x)=0例1:求的极值。44xx31xf3)(变式1求在时极值。44xx31y3),0(x例题2:若f(x)=ax3+bx2-x在x=1与x=-1处有极值.(1)求a、b的值(2)求f(x)的极值.变式训练1:?ba,4,1xbxaxxxf23求处极值为在若)(下一张总结详细解答小结:1:极值定义2个关键①可导函数y=f(x)在极值点处的f’(x)=0。②极值点左右两边的导数必须异号。3个步骤①确定定义域②求f’(x)=0的根③并列成表格用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况思考吗结束)求极值()求(处极值为在:若变式2)(1?ba,14,1xbxaxxxf239b6a,4b-a-10b-2a-34f(1)0(1)f';23)(')1(2解得所以由已知有baxxxf返回总结注意:函数极值是在某一点附近的小区间内定义的,是局部性质。因此一个函数在其整个定义区间上可能有多个极大值或极小值,并对同一个函数来说,在某一点的极大值也可能小于另一点的极小值。思考1.判断下面4个命题,其中是真命题序号为。①f(x0)=0,则f(x0)必为极值;②f(x)=在x=0处取极大值0,③函数的极小值一定小于极大值④函数的极小值(或极大值)不会多于一个。⑤函数的极值即为最值结束吗3x下一个思考1)6()(23xaaxxxf有极大值和极小值,求a范围?思考2解析:f(x)有极大值和极小值f’(x)=0有2实根,0已知函数解得a6或a3结束吗重庆代怀孕重庆代怀孕血鬻搋