EME On Computational Interpretations of the Modal

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

ISSN0249-6399apportderechercheINSTITUTNATIONALDERECHERCHEENINFORMATIQUEETAUTOMATIQUEOnComputationalInterpretationsoftheModalLogicS4IIIb.Conuence,TerminationoftheevQH-Calculus.JeanGoubault-LarrecqN3164Mai1997THEME2OnComputationalInterpretationsoftheModalLogicS4IIIb.Conuence,TerminationoftheevQH-Calculus.JeanGoubault-LarrecqTheme2|GenielogicieletcalculsymboliqueProjetCoqRapportderecherchen3164|Mai1997|48pagesAbstract:Alanguageofprooftermsforminimallogicisthe-calculus,wherecut-eliminationisencodedas-reduction.WeexaminecorrespondinglanguagesfortheminimalversionofthemodallogicS4,withnotionsofreductionthatencodescut-eliminationforthecorrespondingsequentsystem.Itturnsoutthatanaturalinterpretationofthelatterconstructionsisa-calculusextendedbyanidealizedversionofLisp’sevalandquoteconstructs.InthisPartIIIb,wecompletetheresultsofPartIIIa.WeshowthatthetypedevQH-calculusisconuent.ItfollowsthatthetypedevQH-calculusisaconservativeextensionofthetypedS4H-calculus.WealsoprovethatthetypedevQH-calculusisweaklyterminating.Someproblemsremainopen.Inparticular,westilldon’tknowwhetherthetypedevQ-calculusterminatesweakly,orwhethertheuntypedevQ-calculusisconuent.Finally,wecorrectafewmistakesandinaccuraciesthatoccurredinpreviouspartsofthiswork.Key-words:modallogic,S4,-calculus,explicitsubstitutions,termination,conuence,-calculus,simpletypes(Resume:tsvp)Jean.Goubault@inria.frUnitederechercheINRIARocquencourtDomainedeVoluceau,Rocquencourt,BP105,78153LECHESNAYCedex(France)Telephone:(331)39635511{Telecopie:(331)39635330AproposdesinterpretationscalculatoiresdelalogiquemodaleS4IIIb.Conuence,terminaisonduevQH-calcul.Resume:Unlangagedetermesdepreuvepourlalogiqueminimaleestle-calcul,oul’eliminationdescoupuresestcodeeparla-reduction.Nousexaminonsdeslangagescor-respondantspourlaversionminimaledelalogiquemodaleS4,avecdesnotionsdereductionsquicodentl’eliminationdescoupuresdanslesystemedesequentscorrespondant.Ils’averequ’uneinterpretationnaturelledecesconstructionsestun-calculetenduavecuneversionidealiseedesconstructionsevaletquotedeLisp.DanscettepartieIIIb,nouscompletonslesresultatsdelapartieIIIa.NousmontronsqueleevQH-calcultypeestconuent.Ils’ensuitqueleevQH-calcultypeestuneextensionconservativeduS4H-calcultype.NousprouvonsaussiqueleevQH-calculestfaiblementterminant.Ilrestequelquesproblemesouverts.Enparticulier,nousnesavonstoujourspassileevQ-calcultypeterminefaiblement,ousileevQ-calculnontypeestconuent.Finalement,nouscorrigeonsquelqueserreursetinexactitudesdespartiesprecedentesdecetravail.Mots-cle:logiquemodale,S4,-calcul,substitutionsexplicites,terminaison,conuence,-calcul,typessimplesPlanWestartbycorrectingafewmistakesorinaccuraciesofpreviouspartsinSection1,thenestablishthatthetypedevQH-calculusisconuentinSection2|andalthoughtheuntypedcalculusisnotconuent,itisconuentinthetypedcaseeveninthepreviousofxedpointoperators|,andthatthetypedevQH-calculusterminatesweaklyinSection3.WeexaminethecaseofthetypedevQ-calculus,andexplainwhythetechniqueswehaveusedarenotabletoshowthatitterminatesweakly:thedicultyismainlyduetothecomplicatedformof(typed)-normalterms.Fordenitionsandpreviously-knownresults,seethereports[GL96a],hereafterdenotedasPartI,[GL96b](PartII)and[GL96c](PartIIIa).1Corrigendum1.1TerminationofTypedHTerminationofthetypedversionHwasprovedinPartIIIabyreducingittoavariantoftyped-calculuswithrst-orderoperatorsenjoyingspecicreductionrules,the-calculus.ThelatterwasthenprovedterminatingbyusingJouannaudandRubio’shigher-orderrecursivepathordering(horpo),asdenedinthepreliminarypaper[JR96a].Unfortunately,thisproposalwaswrong,inthesensethatitmanagestoproveterminatingevennon-terminatingrewritesystems.(Forinstance,theuntyped-calculus:denetheScotttranslationfromuntyped-termstosimply-typedonesby:(xu)=f(x:ou),(uv)=g(u)v,wherefmapstermsoftypeo!ototermsoftypeo,andgmapstermsoftypeototypeo!o,andobeythereductionruleg(f(u))!u.)Thecorrectedversionofthehorpoisinthenalpaper[JR96b].Unfortunately,theresultpresentedthereistooweakforourpurposes,eventhoughweactuallyonlyneedreductionson-long-normalforms,notthefullreductionsofthetyped-calculus.Wethereforepresentadirectproofoftheterminationofthetyped-calculus,basedonreducibilityargumentsalaTait-Girard[GLT89](calledstrongcomputabilityin[HS88]).Thedenitionofreducibilityandofneutralityisstandard,astheproperties(CR1),(CR2)and(CR3)andtheirproofs.Theonlydicultyliesintheproofofthefactthatalltermsarereducible.Weadoptthepresentationof[GLT89],Chapter6.Sincethenotionsofnegativeandpositivetypesdoesnotmatter,wedropthe+andsuperscriptson-typesinmostcases.Denition1.1WedenethesetsREDofreducible-termsoftypebyinductiononthe-typeby:REDoisthesetofstronglynormalizing-termsoftypeo;RED12=fs:12j1s2RED1;2s2RED2g;RED1!2=fs:1!2j8t2RED1st2RED2g.Denition1.2Wesaythata-termisneutralifandonlyifitisneitheralambda-abstractionxsnorapairhs;ti.Theconditionsofreducibilityare:(CR1)Ifs2RED,thensisstronglynormalizing.(

1 / 54
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功