一般地,如果1,0aaa的b次幂等于N,就是Nab,那么数b叫做以a为底N的对数,记作bNaloga叫做对数的底数,N叫做真数。定义:前课复习举例:1642216log41001022100log102421212log401.0102201.0log10前课复习有关性质:⑴负数与零没有对数(∵在指数式中N0)⑵,01loga1logaa⑶对数恒等式前课复习loglogaNNaNaNa⑷常用对数:我们通常将以10为底的对数叫做常用对数。为了简便,N的常用对数N10log简记作lgN。⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e为底的对数叫自然对数。为了简便,N的自然对数Nelog简记作lnN。(6)底数a的取值范围:),1()1,0(真数N的取值范围:),0(前课复习)()(),()(),(RnbaabRnmaaRnmaaannnmnnmnmnm积、商、幂的对数运算法则:如果a0,a1,M0,N0有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa为了证明以上公式,请同学们回顾一下指数运算法则:新课教学证明:①设,logpMa,logqNa由对数的定义可以得:,paMqaN∴MN=paqaqpaqpMNalog即证得)(1NlogMlog(MN)logaaa证明:②设,logpMa,logqNa由对数的定义可以得:,paMqaN∴qpaaqpaqpNMalog即证得NM)(2NlogMlogNMlogaaa证明:③设,logpMa由对数的定义可以得:,paM∴npnaMnpMnalog即证得)(3R)M(nnlogMlogana上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式。)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa①简易语言表达:“积的对数=对数的和”……②有时逆向运用公式③真数的取值范围必须是),0(④对公式容易错误记忆,要特别注意:,loglog)(logNMMNaaaNMNMaaaloglog)(log例3解(1)解(2)用,logxa,logyazalog表示下列各式:32log)2(;(1)logzyxzxyaazxyzxyaaalog)(loglog3121232log)(loglogzyxzyxaaazyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log2例题讲解例4求下列各式的值757522222log(42)log4log2log45log2解:(1)=7 =72+51=19 例题讲解7552(1)log(42);lg100 (2)525(2)lg100lg102518lg7lg37lg214lg(3)解:18lg7lg37lg214lg18lg7lg)37lg(14lg218)37(714lg201lg例题讲解练习(1)(4)(3)(2)1.求下列各式的值:15log5log332lg5lg31log3log553log6log2236log2)25lg()313(log5155log32log2110lg11log50133log12.用lgx,lgy,lgz表示下列各式:练习(1)(4)(3)(2))lg(xyzzxy2lgzxy3lg=lgx+2lgy-lgz;zyx2lg=lgx+lgy+lgz;=lgx+3lgy-21lgz;zyxlglg2lg21积、商、幂的对数运算法则:如果a0,a1,M0,N0有:)()()(3R)M(nnlogMlog2NlogMlogNMlog1NlogMlog(MN)loganaaaaaaa课堂小结作业:A组P74,4,5,