数列大题训练

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

资料.高考数学数列大题训练21.在数列{}na中,11111,(1)2nnnnaaan(I)设nnabn,求数列{}nb的通项公式(II)求数列{}na的前n项和nS2.设na是公差不为零的等差数列,nS为其前n项和,满足222223457,7aaaaS。(1)求数列na的通项公式及前n项和nS;3.各项均为正数的数列{}na,12,aaab,且对满足mnpq的正整数,,,mnpq都有.(1)(1)(1)(1)pqmnmnpqaaaaaaaa(1)当14,25ab时,求通项;na(2)证明:对任意a,存在与a有关的常数,使得对于每个正整数n,都有1.na4.已知数列na的前n项和11()22nnnSa(n为正整数)。(Ⅰ)令2nnnba,求证数列nb是等差数列,并求数列na的通项公式;(Ⅱ)令1nnncan,12........nnTccc试比较nT与521nn的大小,并予以证明。资料.5.设数列na的前n项和为nS,对任意的正整数n,都有51nnaS成立,记*4()1nnnabnNa。(I)求数列na与数列nb的通项公式;(II)设数列nb的前n项和为nR,是否存在正整数k,使得4nRk成立?若存在,找出一个正整数k;若不存在,请说明理由;(III)记*221()nnncbbnN,设数列nc的前n项和为nT,求证:对任意正整数n都有32nT;6.设数列{}na的通项公式为(,0)napnqnNP.数列{}nb定义如下:对于正整数m,mb是使得不等式nam成立的所有n中的最小值.(Ⅰ)若11,23pq,求3b;(Ⅱ)若2,1pq,求数列{}mb的前2m项和公式;(Ⅲ)是否存在p和q,使得32()mbmmN?如果存在,求p和q的取值范围;如果不存在,请说明理由.7.等比数列{na}的前n项和为nS,已知对任意的nN,点(,)nnS,均在函数(0xybrb且1,,bbr均为常数)的图像上.(1)求r的值;(11)当b=2时,记1()4nnnbnNa求数列{}nb的前n项和nT资料.1、分析:(I)由已知有1112nnnaann112nnnbb利用累差迭加即可求出数列{}nb的通项公式:1122nnb(*nN)(II)由(I)知122nnnan,nS=11(2)2nkkkk111(2)2nnkkkkk而1(2)(1)nkknn,又112nkkk是一个典型的错位相减法模型,易得1112422nknkknnS=(1)nn1242nn(2)试求所有的正整数m,使得12mmmaaa为数列na中的项。【解析】本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力。2、(1)设公差为d,则22222543aaaa,由性质得43433()()daadaa,因为0d,所以430aa,即1250ad,又由77S得176772ad,解得15a,2d,(2)(方法一)12mmmaaa=(27)(25)23mmm,设23mt,则12mmmaaa=(4)(2)86ttttt,所以t为8的约数(方法二)因为1222222(4)(2)86mmmmmmmmaaaaaaaa为数列na中的项,故m+28a为整数,又由(1)知:2ma为奇数,所以2231,1,2mamm即经检验,符合题意的正整数只有2m。3、解:(1)由(1)(1)(1)(1)pqmnmnpqaaaaaaaa得121121.(1)(1)(1)(1)nnnnaaaaaaaa将1214,25aa代入化简得资料.1121.2nnnaaa所以11111,131nnnnaaaa故数列1{}1nnaa为等比数列,从而11,13nnnaa即31.31nnna可验证,3131nnna满足题设条件.(2)由题设(1)(1)mnmnaaaa的值仅与mn有关,记为,mnb则111.(1)(1)(1)(1)nnnnnaaaabaaaa考察函数()(0)(1)(1)axfxxax,则在定义域上有1,111()(),12,011aafxgaaaaa故对*nN,1()nbga恒成立.又222()(1)nnnabgaa,注意到10()2ga,解上式得1()12()1()12()(),()()1()12()ngagagagagaagagagaga取1()12()()gagaga,即有1.na.4、解(I)在11()22nnnSa中,令n=1,可得1112nSaa,即112a当2n时,21111111()2()22nnnnnnnnnSaaSSaa,,11n1112a(),212nnnnnaaan即2.112,1,n21nnnnnnbabbbn即当时,b.又1121,ba数列nb是首项和公差均为1的等差数列.于是1(1)12,2nnnnnnbnnaa.资料.(II)由(I)得11(1)()2nnnncann,所以23111123()4()(1)()2222nnTnK2341111112()3()4()(1)()22222nnTnK由①-②得231111111()()()(1)()22222nnnTnK11111[1()]133421(1)()122212332nnnnnnnnT535(3)(221)3212212(21)nnnnnnnnnTnnn于是确定521nnTn与的大小关系等价于比较221nn与的大小由23452211;2221;2231;2241;225;K可猜想当3221.nnn时,证明如下:证法1:(1)当n=3时,由上验算显示成立。(2)假设1nk时12222(21)422(1)1(21)2(1)1kkkkkkkg所以当1nk时猜想也成立综合(1)(2)可知,对一切3n的正整数,都有221.nn证法2:当3n时01210112(11)2221nnnnnnnnnnnnnnnCCCCCCCCCnnK综上所述,当1,2n时521nnTn,当3n时521nnTn5、解(I)当1n时,111151,4aSa又1151,51nnnnaSaS11115,4即nnnnnaaaaa∴数列na是首项为114a,公比为14q的等比数列,∴1()4nna,*14()4()11()4nnnbnN资料.(II)不存在正整数k,使得4nRk成立。证明:由(I)知14()5441(4)11()4nnnnb212212555201516408888.(4)1(4)1161164(161)(164)kkkkkkkkkbb∴当n为偶数时,设2()nmmN∴1234212()()()84nmmRbbbbbbmn当n为奇数时,设21()nmmN∴1234232221()()()8(1)4844nmmmRbbbbbbbmmn∴对于一切的正整数n,都有4nRk∴不存在正整数k,使得4nRk成立。(III)由54(4)1nnb得2122212255151615161516154141(161)(164)(16)3164(16)16nnnnnnnnnnnnnncbb又1221343,,33bbc,当1n时,132T,当2n时,2223211[1()]41114161625()2513161616311614693162513482116nnnT6、解(Ⅰ)由题意,得1123nan,解11323n,得203n.∴11323n成立的所有n中的最小整数为7,即37b.(Ⅱ)由题意,得21nan,对于正整数,由nam,得12mn.资料.根据mb的定义可知当21mk时,*mbkkN;当2mk时,*1mbkkN.∴1221321242mmmbbbbbbbbb1232341mm213222mmmmmm.(Ⅲ)假设存在p和q满足条件,由不等式pnqm及0p得mqnp.∵32()mbmmN,根据mb的定义可知,对于任意的正整数m都有3132mqmmp,即231pqpmpq对任意的正整数m都成立.当310p(或310p)时,得31pqmp(或231pqmp),这与上述结论矛盾!当310p,即13p时,得21033qq,解得2133q.∴存在p和q,使得32()mbmmN;p和q的取值范围分别是13p,2133q..7、解:因为对任意的nN,点(,)nnS,均在函数(0xybrb且1,,bbr均为常数)的图像上.所以得nnSbr,当1n时,11aSbr,当2n时,1111()(1)nnnnnnnnaSSbrbrbbbb,又因为{na}为等比数列,所以1r,公比为b,所以1(1)nnabb(2)当b=2时,11(1)2nnnabb,111114422nnnnnnnba则234123412222nnnT3451212341222222nnnnnT相减,得23451212111112222222nnnnT31211(1)112212212nnn12311422nnn资料.所以113113322222nnnnnnT【命题立意】:本题主要考查了等比数列的定义,通项公式,以及已知nS求na的基本题型,并运用错位相减法求出一等比数列与一等差数列对应项乘积所得新数列的前n项和nT.

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功