2.2.3独立重复试验与二项分布(1-2)使用

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.2.3独立重复试验与二项分布(1)高二数学选修2-3复习引入前面我们学习了互斥事件、条件概率、相互独立事件的意义,这些都是我们在具体求概率时需要考虑的一些模型,吻合模型用公式去求概率简便.⑴()()()PABPAPB(当AB与互斥时);⑵()(|)()PABPBAPA⑶()()()PABPAPB(当AB与相互独立时)那么求概率还有什么模型呢?分析下面的试验,它们有什么共同特点?⑴投掷一个硬币投掷5次;⑵某人射击1次,击中目标的概率是0.8,他射击10次;(3)一个盒子中装有5个球(3个红球和2个黑球),有放回地依次从中抽取5个球;(4)生产一种零件,出现次品的概率是0.04,生产这种零件4件.它们共同特点:1).每次试验是在同样的条件下进行的;2).各次试验中的事件是相互独立的;3).每次试验都只有两种结果:发生与不发生;4).每次试验某事件发生的概率是相同的.在n次独立重复试验中,记iA是“第i次试验的结果”显然,12()nPAAA=∵“相同条件下”等价于各次试验的结果不会受其他试验的影响,∴上面等式成立.12()()()nPAPAPA1、n次独立重复试验:一般地,在相同条件下,重复做的n次试验称为n次独立重复试验.基本概念独立重复试验的特点:1)每次试验只有两种结果,要么发生,要么不发生;2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验的结果。判断下列试验是不是独立重复试验:1).依次投掷四枚质地不同的硬币,3次正面向上;2).某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中;3).口袋装有5个白球,3个红球,2个黑球,从中依次抽取5个球,恰好抽出4个白球;×√×探究投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?那么恰好出现0次、2次、3次的概率是多少?你能给出一个统一的公式吗?用Ai(i=1,2,3)表示第i次命中的事件B1表示“恰好命中1次”的事件3213213211AAAAAAAAABpqpqpqpqAAAPAAAPAAAPBP222232132132113   =恰好命中k(0≦k≦3)次的概率是多少?对于k=0,1,2,3分别讨论0BP1BP2BP33213pAAAPBP0,1,2,3k,qpCBPk3kk3k03003qpC13113qpC23223qpC33333qpC恰好命中k(0≦k≦3)次的概率是多少?3321qAAAP23213223213qpAAAPAAAPAAAPpqAAAPAAAPAAAP23213213213如果在1次试验中,事件A出现的概率为p,则在n次试验中,A恰好出现k次的概率为:2、n次独立重复试验的概率公式及结构特点:knkknnppCkP)1()((其中k=0,1,2,···,n)实验总次数事件A发生的概率发生的概率事件A事件A发生的次数此时我们称随机变量X服从二项分布,记作:X01…k…np……00nnCpq111nnCpqkknknCpq0nnnCpq1012kknknPXkCppkn()(),,,,...,在n次独立重复试验中,设事件A发生的次数是X,且在每次试验中事件A发生的概率是p,那么事件A恰好发生k次的概率是为于是得到随机变量X的概率分布如下:(q=1-p)3、二项分布XBnp~(,)其中p为成功概率.是(p+q)n展开式第k+1项吗?说说与两点分布的区别和联系,对符号的理解n,p,k运用n次独立重复试验模型解题例1某射手每次射击击中目标的概率是0.8.求这名射手在10次射击中。(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率。(结果保留两个有效数字)设X为击中目标的次数,则X~B(10,0.8)(1)在10次射击中,恰有8次击中目标的概率为(2)在10次射击中,至少8次击中目标的概率为10988XPXPXPXP68.08.018.08.018.08.018.0101010101091099108108810CCC30.08.018.088108810CXP•第二课时练习已知一个射手每次击中目标的概率为,求他在三次射击中下列事件发生的概率。(1)命中一次;(2)恰在第三次命中目标;(3)命中两次;(4)刚好在第二、第三两次击中目标。(5)至少一次击中35p运用n次独立重复试验模型解题例2在图书室中只存放技术书和数学书,任一读者借技术书的概率为0.2,而借数学书的概率为0.8,设每人只借一本,有5名读者依次借书,求至多有2人借数学书的概率。变式练习•例3:3次独立重复试验中,A至少发生1次的概率为,求A在一次试验中发生的概率?1927例3甲、乙两队参加乒乓球团体比赛,甲对与乙对的实力之比为3:2,则在5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).中⑴试求甲打完5局才能取胜的概率.⑵按比赛规则甲获胜的概率.运用n次独立重复试验模型解题(2)记事件A“甲打完3局才能取胜”,记事件B=“甲打完4局才能取胜”,记事件C=“甲打完5局才能取胜”.事件D=“按比赛规则甲获胜”,则DABC,又因为事件A、B、C彼此互斥,故()()()()()PDPABCPAPBPC1331816162.答:按比赛规则甲获胜的概率为12.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12.⑴甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负奎屯王新敞新疆∴甲打完5局才能取胜的概率222141113()()22216PC.例4:甲投篮的命中率为0.8,乙投篮的命中率为0.7,(1)每人各投篮3次,每人恰好都投中2次的概率是多少?(2)甲、乙各投3次求甲至少胜乙2个球的概率?例5:一个口袋内装有5个黄球,3个红球,从袋中往外取球,每次取出后记下球的颜色然后放回,直到红球出现10次时停止,停止时取球的次数§是一个随机变量,则p(§=12)=?在n次独立重复试验中,记iA是“第i次试验的结果”显然,12()nPAAA=∵“相同条件下”等价于各次试验的结果不会受其他试验的影响,∴上面等式成立.12()()()nPAPAPA1、n次独立重复试验:一般地,在相同条件下,重复做的n次试验称为n次独立重复试验.小结:独立重复试验的特点:1)每次试验只有两种结果,要么发生,要么不发生;2)任何一次试验中,A事件发生的概率相同,即相互独立,互不影响试验的结果。小结:2、二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为()(1),0,1,2,...,.kknknPXkCppkn称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功