拉格朗日插值定理证明作者:田茂(tianmao999@163.com)已知:110111212211()1...()1...*......................()1...NNNNNNNfxaxxfxaxxfxaxx(1)则有:01111100()1*....()()()NNNNiijiijjiaafxxxaxafxaa(2)证明过程如下:由:()()0iifxafa(3)可知:()()()()iifxfaxagx(4)即有:()()mod()iifxfaxa(5)由中国余数定理(CRT)可知:1()()*()*()niiiifxNxMxfa(6)式(6)中,()iMx满足:1()()nijjjiMxxa(7)()iNx满足:()()()()1iiiiNxMxnxxa(8)即有:()()1mod()iiiNxMxxa(9)由(7)得:111()()()mod()nijjjiniijjjinijijjiMxxaxaaaaaxa(10)如果要满足式(9),由(10)可知,()iNx为:11()inijjjiNxaa(11)将(7)和(11)代入(6)可得:11111100()()*()*()1*()*()()()()niiiinnjinijijjijjiNNiijiijjifxNxMxfaxafaaaxafxaa(12)命题得证。