1梁变形实验报告(1)简支梁实验一、实验目的1、简支梁见图一,力F在跨度中点为最严重受力状态,计算梁内最危险点达到屈服应力时的屈服载荷Fs;2、简支梁在跨度中点受力F=1.5kg时,计算和实测梁的最大挠度和支点剖面转角,计算相对理论值的误差;3、在梁上任选两点,选力F的适当大小,验证位移互等定理;4、简支梁在跨度中点受力F=1.5kg时,实测梁的挠度曲线(至少测8个点挠度,可用对称性描点连线)。二、试件及实验装置简支梁实验装置见图一,中碳钢矩形截面梁,屈服应力s360MPa,弹性模量E=210GPa。百分表和磁性表座各1个;砝码5个,各砝码重0.5kg;砝码盘和挂钩1套,约重0.1kg;游标卡尺和钢卷尺各1个。三、实验原理和方法1、求中点挠度简支梁在跨度中点承受力F时,中点挠度最大,在终点铅垂方向安装百分表,小表针调到量程中点附近,用手轻拍底座振动,使标杆摩擦力最小,大表指针示值稳定时,转表盘大表针调零,分级加力测挠度,检验线性弹性。2、求支点转角梁小变形时,支点转角a;在梁的外伸端铅垂方向安装百分表,加力测θfmaxF图一实验装置简图a21F1122挠度,代入算式求支点转角。3、验证位移互等定理:图二的线弹性体,F1在F2引起的位移12上所作之功,等于F2在F1引起的位移21上所作之功,即:212121FF,若F1=F2,则有:2112上式说明:当F1与F2数值相等时,F2在点1沿F1方向引起的位移12,等于F1在点2沿F2方向引起的位移21,此定理称为位移互等定理。为了尽可能减小实验误差,重复加载4次。取初载荷F0=(Q+0.5)kg,式中Q为砝码盘和砝码钩的总重量,F=2kg,为了防止加力点位置变动,在重复加载过程中,最好始终有0.5kg的砝码保留在砝码盘上。四、数据记录1、中点分级加载时,中点挠度值:F(kg)0.00.51.01.52.02.5w(×10-2mm)020416283103△w(×10-2mm)20212121202、测支点转角F=1.5kg;w(端点)=0.15mm;a=71mm3、验证位移互等定理F(2)=1.5kgw(5)=0.34mmF(5)=1.5kgw(2)=0.36mm4、绘制挠曲线(中点加载F=1.5kg)△L(mm)50100150200250300350w(×10-2mm)11183341495458五、实验结果处理图二位移互等定理示意图12F21231、计算梁的屈服载荷最危险点为中点,2、计算最大挠度和支点处转角:实验值:F=1.5kg时,w=0.62mm;理论值:F=1.5kg;b=20mm;h=9mm;E=200GPa;l=0.8m实验值和理论值的比较:3、验证位移互等定理:有试验数据不难看出,位移互等定理成立,测量误差大致为5.6%画中点载荷F=1.5kg时的挠曲线:4数据如下:△L(mm)050100150200250300350400w(×10-2mm)0-11-18-33-41-49-54-58-62△L(mm)450500550600650700750800w(×10-2mm)-58-54-49-41-33-18-110挠曲线图(2)悬臂梁实验一、实验目的利用贴有应变片的悬臂梁装置,确定金属块的质量。二、实验设备1、悬臂梁支座;2、电阻应变仪;3、砝码两个,金属块一个,砝码盘和挂钩。4、游标卡尺和钢卷尺。三、实验试件及装置中碳钢矩形截面梁,屈服极限s360MPa,弹性模量E=210GPa。mgRARBl5四、实验原理和方法细长梁受载时,A—B截面上的最大弯曲正应变表达式为:ZWEMmaxA—B截面上的弯矩的表达式为:lmgM五、数据处理实验测得:当在端点处挂上m0=0.5kg的砝码时,max=142*10-6;当将未知金属块加载在悬臂梁端点时,max=90*10-6;实验感想与体会第一个实验做过很多遍,也认为它确实有一些需要改进之处,但是这次更多的感想来自于第二个实验。如果说有一些实验用品和仪器放在我们面前,已知试验目的,我们怎么样来选择最简单并且精度较高的试验方法来测量?我认为这是一个很值得思考的问题。比如说第二个实验,实验教材上所用的方法是利用应变仪,在梁上1、2两处加挂未知金属物,然后利用公式ZWElmg122max1max12lWEmgz可得到金属块的质量。同样,我的实验报告上述的方法,在理论上也是行得通的。但6我认为讲义上要更精确,但是做完试验后才发现我们组少测了一些数据,所以只能“勉为其难”的采取了上述方法。另外,我认为用位移互等定理,也就是公式212121FF也可测得该质量,如果有时间,可以还可以考虑各种方法,并比较其精度。