1数字滤波器的应用领域在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。(1)语音处理语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。该领域主要包括5个方面的内容:第一,语音信号分析。即对语音信号的波形特征、统计特性、模型参数等进行分析计算;第二,语音合成。即利用专用数字硬件或在通用计算机上运行软件来产生语音;第三,语音识别。即用专用硬件或计算机识别人讲的话,或者识别说话的人;第四,语音增强。即从噪音或干扰中提取被掩盖的语音信号。第五,语音编码。主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。近年来,这5个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品,例如,盲人阅读机、哑人语音合成器、口授打印机、语音应答机,各种会说话的仪器和玩具,以及通信和视听产品大量使用的音频压缩编码技术。(2)图像处理数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析X射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。(3)通信在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波器,几乎是寸步难行。其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。(4)电视数字电视取代模拟电视已是必然趋势。高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。视频压缩和音频压缩技术所取得的成就和标准化工作,促成了电视领域产业的蓬勃发展,而数字滤波器及其相关技术是视频压缩和音频压缩技术的重要基础。(5)雷达雷达信号占有的频带非常宽,数据传输速率也非常高,因而压缩数据量和降低数据传输速率是雷达信号数字处理面临的首要问题。高速数字器件的出现促进了雷达信号处理技术的进步。在现代雷达系统中,数字信号处理部分是不可缺少的,因为从信号的产生、滤波、加工到目标参数的估计和目标成像显示都离不开数字滤波技术。雷达信号的数字滤波器是当今十分活跃的研究领域之一。(6)声纳声纳信号处理分为两大类,即有源声纳信号处理和无源声纳信号处理,有源声纳系统涉及的许多理论和技术与雷达系统相同。例如,他们都要产生和发射脉冲式探测信号,他们的信号处理任务都主要是对微弱的目标回波进行检测和分析,从而达到对目标进行探测、定位、跟踪、导航、成像显示等目的,他们要应用到的主要信号处理技术包括滤波、门限比较、谱估计等。(7)生物医学信号处理数字滤波器在医学中的应用日益广泛,如对脑电图和心电图的分析、层析X射线摄影的计算机辅助分析、胎儿心音的自适应检测等。(8)音乐数字滤波器为音乐领域开辟了一个新局面,在对音乐信号进行编辑、合成、以及在音乐中加入交混回响、合声等特殊效果特殊方面,数字滤波技术都显示出了强大的威力。数字滤波器还可用于作曲、录音和播放,或对旧录音带的音质进行恢复等。(9)其他领域数字滤波器的应用领域如此广泛,以至于想完全列举他们是根本不可能的,除了以上几个领域外,还有很多其他的应用领域。例如,在军事上被大量应用于导航、制导、电子对抗、战场侦察;在电力系统中被应用于能源分布规划和自动检测;在环境保护中被应用于对空气污染和噪声干扰的自动监测,在经济领域中被应用于股票市场预测和经济效益分析,等等。2数字滤波器的基本结构数字滤波器可以用差分方程、单位取样响应以及系统函数等表示。对于研究系统的实现方法,即它的运算结构来说,用框图表示最为直接。一个给定的输入输出关系,可以用多种不同的数字网络来实现。在不考虑量化影响时,这些不同的实现方法是等效的;但在考虑量化影响时,这些不同的实现方法性能上就有差异。因此,运算结构是很重要的,同一系统函数H(z),运算结构的不同,将会影响系统的精度、误差、稳定性、经济性以及运算速度等许多重要性能。IIR(无限冲激响应)滤波器与FIR(有限冲激响应)滤波器在结构上有自己不同的特点,在设计时需综合考虑。作为线性时不变系统的数字滤波器可以用系统函数来表示,而实现一个系统函数表达式所表示的系统可以用两种方法:一种方法是采用计算机软件实现;另一种方法是用加法器、乘法器和延迟器等元件设计出专用的数字硬件系统,即硬件实现。不论软件实现还是硬件实现,在滤波器设计过程中,由同一系统函数可以构成很多不同的运算结构。对于无限精度的系数和变量,不同结构可能是等效的,与其输入和输出特性无关;但是在系数和变量精度是有限的情况下,不同运算结构的性能就有很大的差异。因此,有必要对离散时间系统的结构有一基本认识。一.IIR滤波器的基本结构一个数字滤波器可以用系统函数表示为:01()()()1MkkkNkkkbzYzHzXzaz由这样的系统函数可以得到表示系统输入与输出关系的常系数线性差分程为:00()()()NMkkkkynaynkbxnk可见数字滤波器的功能就是把输入序列x(n)通过一定的运算变换成输出序列y(n)。不同的运算处理方法决定了滤波器实现结构的不同。无限冲激响应滤波器的单位抽样响应h(n)是无限长的,其差分方程如(2-2)式所示,是递归式的,即结构上存在着输出信号到输入信号的反馈,其系统函数具有(2-1)式的形式,因此在z平面的有限区间(0︱z︱∞)有极点存在。前面已经说明,对于一个给定的线形时不变系统的系统函数,有着各种不同的等效差分方程或网络结构。由于乘法是一种耗时运算,而每个延迟单元都要有一个存储寄存器,因此采用最少常数乘法器和最少延迟支路的网络结构是通常的选择,以便提高运算速度和减少存储器。然而,当需要考虑有限寄存器长度的影响时,往往也采用并非最少乘法器和延迟单元的结构。IIR滤波器实现的基本结构有:(1)IIR滤波器的直接型结构(直接I型和直接II型):优点:延迟线减少一半,变为N个,可节省寄存器或存储单元;缺点:其它缺点同直接I型。通常在实际中很少采用上述两种结构实现高阶系统,而是把高阶变成一系列不同组合的低阶系统(一、二阶)来实现。(2)IIR滤波器的级联型结构;特点:系统实现简单,只需一个二阶节系统通过改变输入系数即可完成;极点位置可单独调整;运算速度快(可并行进行);各二阶网络的误差互不影响,总的误差小,对字长要求低。缺点:不能直接调整零点,因多个二阶节的零点并不是整个系统函数的零点,当需要准确的传输零点时,级联型最合适。(3)IIR滤波器的并联型结构。优点:简化实现,用一个二阶节,通过变换系数就可实现整个系统;极、零点可单独控制、调整,调整α1i、α2i只单独调整了第i对零点,调整β1i、β2i则单独调整了第i对极点;各二阶节零、极点的搭配可互换位置,优化组合以减小运算误差;可流水线操作。缺点:二阶阶电平难控制,电平大易导致溢出,电平小则使信噪比减小。a、直接型b、并联型c、串联型图1、IIR滤波器的基本结构二.FIR滤波器的基本结构FIR滤波器[7]的单位抽样响应为有限长度,一般采用非递归形式实现。通常的FIR数字滤波器有横截性和级联型两种。FIR滤波器实现的基本结构有:(1)FIR滤波器的横截型结构表示系统输入输出关系的差分方程可写作:10()()()Nmynhmxnm(2-3)直接由差分方程得出的实现结构如图2-2所示:图2、横截型(直接型﹑卷积型)若h(n)呈现对称特性,即此FIR滤波器具有线性相位,则可以简化加横截型结构,下面分情况讨论:N为奇数时线形相位FIR滤波器实现结构N为偶数时线性相位FIR滤波器实现结构(2)FIR滤波器的级联型结构将H(z)分解成实系数二阶因子的乘积形式:[]121201201()()NNNkkkNkHzhnzbbzbz(2-4)这时FIR滤波器可用二阶节的级联结构来实现,每个二阶节用横截型结构实现。如图所示:图3、FIR滤波器的级联结构这种结构的每一节控制一对零点,因而在需要控制传输零点时可以采用这种结构。3数字滤波器的设计原理数字滤波器根据其冲激响应函数的时域特性,可分为无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。IIR滤波器的特征是,具有无限持续时间冲激响应。这种滤波器一般需要用递归模型来实现,因而有时也称之为递归滤波器。FIR滤波器的冲激响应只能延续一定时间,在工程实际中可以采用递归的方式实现,也可以采用非递归的方式实现。数字滤波器的设计方法有多种,如双线性变换法、窗函数设计法、插值逼近法和Chebyshev逼近法等等。随着MATLAB软件尤其是MATLAB的信号处理工作箱的不断完善,不仅数字滤波器的计算机辅助设计有了可能,而且还可以使设计达到最优化。数字滤波器设计的基本步骤如下:(1)确定指标在设计一个滤波器之前,必须首先根据工程实际的需要确定滤波器的技术指标。在很多实际应用中,数字滤波器常常被用来实现选频操作。因此,指标的形式一般在频域中给出幅度和相位响应。幅度指标主要以两种方式给出。第一种是绝对指标。它提供对幅度响应函数的要求,一般应用于FIR滤波器的设计。第二种指标是相对指标。它以分贝值的形式给出要求。在工程实际中,这种指标最受欢迎。对于相位响应指标形式,通常希望系统在通频带中具有线性相位。运用线性相位响应指标进行滤波器设计具有如下优点:①只包含实数算法,不涉及复数运算;②不存在延迟失真,只有固定数量的延迟;③长度为N的滤波器(阶数为N-1),计算量为N/2数量级。因此,本文中滤波器的设计就以线性相位FIR滤波器的设计为例。(2)逼近确定了技术指标后,就可以建立一个目标的数字滤波器模型。通常采用理想的数字滤波器模型。之后,利用数字滤波器的设计方法,设计出一个实际滤波器模型来逼近给定的目标。(3)性能分析和计算机仿真上两步的结果是得到以差分或系统函数或冲激响应描述的滤波器。根据这个描述就可以分析其频率特性和相位特性,以验证设计结果是否满足指标要求;或者利用计算机仿真实现设计的滤波器,再分析滤波结果来判断。4滤波器的性能指标在进行滤波器设计时,需要确定其性能指标。一般来说,滤波器的性能要求往往以频率响应的幅度特性的允许误差来表征。以低通滤波器特性为例,频率响应有通带、过渡带及阻带三个范围。在通带内:1-AP≤|H(ejω)|≤1|ω|≤ωc在阻带中:|H(ejω)|≤Astωst≤|ω|≤ωc其中ωc为通带截止频率,ωst为阻带截止频率,Ap为通带误差,Ast为阻带误差。与模拟滤波器类似,数字滤波器按频率特性划分为低通、高通、带通、带阻、全通等类型,由于数字滤波器的频率响应是周期性的,周期为2π。各种理想数字滤波器的幅度频率响应如图所示:图5、各种理想数字滤波器的幅度频率响应图4、低通滤波器频率响应幅度特性的容限图5IIR数字滤波器的设计方法IIR数字滤波器设计最通用的方法是借助模拟滤波器进行设计。模拟滤波器设计已经有了一套相当成熟的方法,它不但有完整的设计公式,而且还有较为完整的图表供查询,因此,充分利用这些已有的资源将会给数字滤波器的设计带来很大方便,设计步骤:(1)按一定规则将给出的数字滤波器的技术指标转换为模拟滤波器的技术指标;(2)根据转换后的技术指标设计模拟低通滤波器H(s);(3)在按一定规则将H(s)转换为H(z)。若所设计的数字滤波器是低通的,那么上述设计工作可以结束,若所设计的是高通、带通或者带阻滤波器,那么还有步骤:(4)将高通、带通或者带阻数字滤波器的技术指标先转化为低通滤波器的技术指标,然后按上述步骤(2)设计出模拟低通滤波器H(s),再由冲