342Vol.34,No.220052RAREMETALMATERIALSANDENGINEERINGFebruary20052004-08-19(20271037)(50025103)(90306014)(50311140138)19640300240351-6018843E-mail:xubs@public.ty.sx.cn(030024)TiO2NaOHTiO2XRDSEMHRTEMTiO210nm~50nmTiO23-2-1DTiO2TQ426A1002-185X(2005)02-0287-04TiO21[1]TiO21TiO2[2]-TiO2[3][4]TiO2NaOH50mLTiO26/min~8/min1302d~3d60TiO2D/max-2500XKYKYJEM-2010SPR-920DLambdaBIO-40·288·34XRD1TiO2(101)(200)TiO2(110)TiO2[5]67.3%()1TiO2XRDFig.1XRDpattenofTiO2nanotube2(SEM)TiO210nm~50nm2TiO2SEMFig.2SEMimageofTiO2nanotube3(TEM)TiO24TiO2(4a)TiO2(4b)(HRTEM)34aSEM4a354b15HRTEM[6]3TiO2TEMFig.3TEMimageofTiO2nanotube4TiO2(a)(b)HRTEMFig.4HRTEMimagesofTiO2nanotubes(a)thewallofTiO2nanotubeswithdifferentsize(b)4bd0.7nm1[100]HRTEM()d0.32nmTiO2(110)XRDTiO2[100]51µm20nm30nma0.31nm0.7nm[100]10nmb(110)(101)(200)AnataseRutile1020304050602θ/(°)Intensity/a.u.2·289·0.7nm5b5a5HRTEM(a)(b)Fig.5Cross-sectionalHRTEMimage(a)andsimulationmodelofcross-sectionofTiO2nanotube(b)TiO2TiO2(010)TiO23-2-1D6TiO2380nm200nm~380nmTiO2TiO2TiO2TiO2TiO2Ti3dO2pTiO23.2eV[7]387nmTiO2TiO26TiO2Fig.6UltravioletabsorbtionspectraofTiO2nanotubeandrawpowder7TiO2365nmTiO2560nmPL[8]540nm560nmPL()7TiO2Fig.7PhotoluminescencespectraofTiO2nanotubeandrawpowderTiO210nm~10nmab200300400500Wavelength/nmAbsorbance0.80.60.40.20NanotubePowder300400500600700Wavelength/nmIntensity/a.u.NanotubePowder·290·3450nmTiO23-2-1DTiO2References[1]FoxMA,DulayMT.HeterogeneousPhotocatalysis[J].JChemRev,1993,93:341~357[2]ChoiW,TerminA,HoflmarmMR.TheRoleofMetalIonDopantsinQuantum-sizedTiO2[J].JPhysChem,1994,98:13669~13675[3]LakshmiBB,PatrissiCJ,MartinCR.Sol-GelTemplateSynthesisofSemiconductorNanostructure[J].JChemMater,1997,9:857~869[4]ShiErwei(),WangBuguo(),ZhongWeizhuo()etal.ApplicationandDevelopmentofHydrothomalMethod[J].InorganicMaterialJournal(),1996,11(2):193~206[5]GaoLian(),ZhengShan(),ZhangQinhong().PhotocatalyseMaterialsandApplicationofNanoTiO2()[M].Beijing:ChemicalIndustryPress,2002:74[6]ZhangLide(),MuJimei().NanoStructureandNanoMaterial()[M].Beijing:SciencePress,2001:28~30[7]MoShangdi,ChingWY.ElectronicandOpticalPropertiesofThreePhasesofTiO2[J].JPhysRevB,1995,51(19):13023~13029[8]SerponeN,LawlessD,KhairutdinovR.SizeEffectsonthePhotophysicalPropertiesofColloidalAnataseTiO2Particles[J].JPhysChem,1995,99:16646~16650SynthesisandCharacterizationofTiO2NanotubeLiangJian,MaShufang,HanPeide,SunCaiyun,XuBingshe(TaiyuanUniversityofTechnology,Taiyuan030024,China)Abstract:TiO2nanotubewassynthesizedsuccessfullybyhydrothermalprocess,usingTiO2powderandNaOHastheprecurser.Themicro-morphologyandopticalpropertieswerecharacterizedbyXRD,SEM,HRTEM,UVAbsorptionSpectraAnalyzerandSpectroradiometer,andtheformationmechanismwasalsostudied.TheresultsshowedthattheproductisanataseTiO2nanotubewithmultiplelayerswall,10nm~50nmintheout-diameter,severalmicrontotensinthelength,andopenedinbothofends.Theformationmechanismofthetubeiscoordinatewith3-2-1Dmodel.TheUVAbsorptionSpectraandPLspectrashowedthattheTiO2nanotubespresentblue-shiftphenomenoncomparedtotherawmaterial.ThePLspectraalsoshowedthatatthevisiblebandtheluminousintensityoftheTiO2nanotubesincreasedobviously.Keywords:hydrothermalsynthesis;nanotube;multilayertube-walls;blue-shiftBiography:LiangJian,CandidateforPh.D.,CollegeofMaterialsandTechnology,TaiyuanUniversityofTechnology,Taiyuan030024,P.R.China,Tel;0086-351-6018843,E-mail:xubs@public.ty.sx.cn