2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.A.B.C.D.2.已知集合,,则A.B.C.D.3.函数的图像大致为4.已知向量,满足,,则A.4B.3C.2D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.B.C.D.6.双曲线的离心率为,则其渐近线方程为A.B.C.D.7.在中,,,,则A.B.C.D.i23i32i32i32i32i1,3,5,7A2,3,4,5BAB353,51,2,3,4,5,72eexxfxxab||1a1ab(2)aab0.60.50.40.322221(0,0)xyabab32yx3yx22yx32yxABC△5cos25C1BC5ACAB423029258.为计算,设计了如图的程序框图,则在空白框中应填入A.B.C.D.9.在正方体中,为棱的中点,则异面直线与所成角的正切值为A.B.C.D.10.若在是减函数,则的最大值是A.B.C.D.11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A.B.C.D.12.已知是定义域为的奇函数,满足.若,则A.B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。、13.曲线在点处的切线方程为__________.14.若满足约束条件则的最大值为__________.15.已知,则__________.11111123499100S开始0,0NTSNTS输出1i100i1NNi11TTi结束是否1ii2ii3ii4ii1111ABCDABCDE1CCAECD22325272()cossinfxxx[0,]aaπ4π23π4π1F2FCPC12PFPF2160PFFC3122331231()fx(,)(1)(1)fxfx(1)2f(1)(2)(3)fff(50)f502lnyx(1,0),xy250,230,50,xyxyx≥≥≤zxy5π1tan()45αtanα16.已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23为选考题。考生根据要求作答。(一)必考题:共60分。17.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)如图,在三棱锥中,,,为的中点.SSASBSA30SAB△8nS{}nan17a315S{}nanSnSyytt1,2,,17ˆ30.413.5ytt1,2,,7ˆ9917.5ytPABC22ABBC4PAPBPCACOAC(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.20.(12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程(2)求过点,且与的准线相切的圆的方程.21.(12分)已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.23.[选修4-5:不等式选讲](10分)设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.POABCMBC2MCMBCPOM24Cyx:FF(0)kklCAB||8ABlABC32113fxxaxx3a()fx()fxxOyC2cos,4sinxθyθθl1cos,2sinxtαytαtClCl(1,2)l()5|||2|fxxax1a()0fx≥()1fx≤a绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题1.D2.C3.B4.B5.D6.A7.A8.B9.C10.C11.D12.C二、填空题13.y=2x–214.915.16.8π三、解答题17.解:(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以当n=4时,Sn取得最小值,最小值为–16.18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始32y$y$环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.20.解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k0).y$2322AC12AC222OPOBPB12AC23BC423253sinOCMCACBOM455455设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.21.解:(1)当a=3时,f(x)=,f′(x)=.令f′(x)=0解得x=或x=.当x∈(–∞,)∪(,+∞)时,f′(x)0;当x∈(,)时,f′(x)0.故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)由于,所以等价于.设=,则g′(x)=≥0,仅当x=0时g′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.2(1)4ykxyx2222(24)0kxkxk216160k212224kxxk212244(1)(1)kABAFBFxxk22448kk2(3)yx5yx00220005(1)(1)16.2yxyxx,0032xy,00116.xy,22(3)(2)16xy22(11)(6)144xy3213333xxx263xx323323323323323323323323323323210xx()0fx32301xaxx()gx3231xaxx2222(23)(1)xxxxx又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.综上,f(x)只有一个零点.22.解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.23.解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是22111626()0366aaa103C221416xycos0ltan2tanyxcos0l1xlCt22(13cos)4(2cossin)80ttCl(1,2)C1t2t120tt1224(2cossin)13costt2cossin0ltan2k1a24,1,()2,12,26,2.xxfxxxx()0fx{|23}xx()1fx|||2|4xax|||2||2|xaxa2x()1fx|2|4a|2|4a6a2aa(,6][2,)