Solution06-2020

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

SPRING2020EconomicMathematicsIIPROBLEMSET#61.(#7.1,p.222)LetXbearandomvariablewithprobabilityFindtheprobabilitydistributionoftherandomvariableY=2X1.Solution:fY(y)={13;y=1;3;50;otherwise2.(#7.2,p.222)LetXbeabinomialrandomvariablewithprobabilitydistributionFindtheprobabilitydistributionoftherandomvariableY=X2.Solution:fY(y)=8:(3py)(25)py(35)3py;y=0;1;4;90;otherwise3.(#7.6,p.223)GiventherandomvariableXwithprobabilitydistributionFindtheprobabilitydistributionofY=8X3.1Solution:fY(y)=ddyP(Yy)=ddyP(8X3y)==ddyP(X12y13)=fX(12y13)ddy12y13=y1316y23=16y13for0y8;andzerootherwise.4.(#7.8,p.223)Adealer’sprofit,inunitsof$5000,onanewautomobileisgivenbyY=X2,whereXisarandomvariablehavingthedensityfunction(a)FindtheprobabilitydensityfunctionoftherandomvariableY.(b)UsingthedensityfunctionofY,findtheprobabilitythattheprofitonthenextnewautomobilesoldbythisdealershipwillbelessthan$500.Solution:(a)fY(y)=ddyP(Yy)=ddyP(X2y)=ddyP(pyXpy)ddyP(Xpy)=fX(py)ddypy=2(1py)12py=1py1for0y1;andzerootherwise.(b)∫1100(1py1)dy=p401105.SupposearandomvariableXhasapdffX(x)=12 e jxj;1x1;where 0:Thisiscalledthedoubleexponential(orLaplace)distribution.FindthepdfforY=jXj:2Solution:fY(y)=ddyP(Yy)=ddyP(jXjy)=ddyP(yXy)=ddyP(Xy)ddyP(Xy)=fX(y)ddy(y)fX(y)ddy(y)=12 e y112 e y(1)= e y;fory0andzerootherwise.6.SupposefX(x)=12for0x2:FindthePDFofY=X(2X):Solution:fY(y)=ddyP(Yy)=ddyP(2XX2y)=ddyP(2XX2y0)=ddyP(X1√1y)+ddyP(X1+√1y)=ddyP(X1√1y)+ddy(1P(X1+√1y))=fX(1√1yddy(1√1y)fX(1+√1y)ddy(1+√1y)=12(12p1y)12(+12p1y)=12p1y;for0y1andzerootherwise.7.(#4.2,p.117)TheprobabilitydistributionofthediscreterandomvariableXisFindthemeanofX.3Solution:E(X)=∑Xxf(x)=0f(0)+1f(1)+2f(2)+3f(3)=(31)(14)1(34)2+2(32)(14)2(34)1+3(33)(14)3(34)0=2764+1864+364=4864=348.(#4.13,p.117)ThedensityfunctionofthecontinuousrandomvariableX,thetotalnumberofhours,inunitsof100hours,thatafamilyrunsavacuumcleaneroveraperiodofoneyear,isgiveninExercise3.7onpage92asFindtheaveragenumberofhoursperyearthatfamiliesruntheirvacuumcleaners.Solution:E(X)=∫10xf(x)dx+∫21xf(x)dx=∫10x2dx+∫21x(2x)dx=13x3 10+x213x3 21=1100hours.9.(#4.34,p.127)LetXbearandomvariablewiththefollowingprobabilitydistri-bution:FindthestandarddeviationofX.Solution:E(X)=∑Xxf(x)=20:3+30:2+50:5=2:5E(X2)=∑Xx2f(x)=4(2)20:3+320:2+520:5=15:5)2X=E(X2)[E(X)]2=15:56:25=9:25)ThestandarddeivationX=√2X=p9:253:041410.(#4.43,p.127)Thelengthoftime,inminutes,foranairplanetoobtainclearancefortakeoffatacertainairportisarandomvariableY=3X2,whereXhasthedensityfunctionFindthemeanandvarianceoftherandomvariableY.Solution:WeknowE(Y)=E(3X2)=3E(X)2andVar(Y)=Var(3X2)=9Var(X):Let’scalculateE(X)andVar(X)first.E(X)=∫11xf(x)dx=∫10x14ex=4dx=x(ex=4) 10+∫10ex=4dx=4E(X2)=∫11x2f(x)dx=∫10x214ex=4dx=(x2(ex=4) 10+∫102xex=4dx=0+8∫10x14ex=4dx=8E(X)=32)2X=E(X2)[E(X)]2=3242=16Therefore,E(Y)=E(3X2)=3E(X)2=122=10;and2Y=92X=169=14411.(#4.50,p.127)Foralaboratoryassignment,iftheequipmentisworking,thedensityfunctionoftheobservedoutcomeXis5FindthevarianceandstandarddeviationofX.Solution:E(X)=∫11xf(x)dx=∫10x2(1x)dx=13E(X2)=∫10x22(1x)dx=∫10(2x22x3)dx=(23x312x4) 10=1=6:E(X2)=∫0x22(1x)dx=∫0(2x22x0)dx=)2X=E(X2)[E(X)]2=1=61=9=1=18)X=√1=1812.(#4.59,p.138)IfarandomvariableXisdefinedsuchthatfindand2.Solution:E(X22X+1)=E(X2)2E(X)+1=10andE(X24X+4)=E(X2)4E(X)+4=6E(X2)=16;andE(X)=72=E(X)=72;and2=var(X)=E(X2)2=16494=1546

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功