RNAi的作用机制及siRNA的合成方法RNAi的作用机制及siRNA的合成方法RNA干扰(RNAinterference,RNAi)是由双链RNA(doublestrandedRNA,dsRNA)分子在mRNA水平关闭相应序列基因表达或使其沉默的过程。dsRNA可以抑制不同类型细胞的靶向基因表达,用特异性的抗体几乎检测不到靶向基因所表达的蛋白质。因...关键词:合成方法机制作用基因siRNARNAi的作用机制及siRNA的合成方法RNA干扰(RNAinterference,RNAi)是由双链RNA(doublestrandedRNA,dsRNA)分子在mRNA水平关闭相应序列基因表达或使其沉默的过程。dsRNA可以抑制不同类型细胞的靶向基因表达,用特异性的抗体几乎检测不到靶向基因所表达的蛋白质。因此,RNAi技术又被形象地称为基因敲除(knockout)或基因沉默(genesilencing)。RNAi是一种典型的转录后基因调控方法,又称转录后基因沉默(posttracriptionalgenesilencing,PTGS)[1]。1RNAi技术的发展过程早在1990年,植物学家Jorgeen等人用矮牵牛花做试验,将紫色素合成基因导入植物体,尝试将更多拷贝的色素基因注入植物体,使花朵的色彩更加艳丽。结果许多花朵没有开出更艳丽的花朵,反而开出白色的花朵。进一步分析发现,这些转入的基因不但自身没有表达为蛋白质,反而关闭了牵牛花中与其同源的色素相关基因的表达。由于这种由外源基因的导入而造成的抑制作用最初被确认是发生在转录后水平,称这种现象为共抑制(cosureion)[2]。1994年,Cogoni等人将外源性类胡萝卜素基因导入野生型粗糙链孢霉菌,结果转化细胞中内源性的类胡萝卜素基因也受到了抑制,他们称这种基因失活形式为消除作用或基因压制(quelling)[3]。1995年康乃尔大学的Guo[4]博士在实验中想通过反义RNA阻断美丽线虫(C.elega)的par-1基因表达,同时还用正义RNA做了一个对照,试图观察到对照试验组基因表达增强的现象,但结果却发现了反义和正义RNA都阻断了该基因的表达,Guo等人一直不能解释该现象。直到1998年Fire等[5]才发现这是由于Guo博士在试验中污染了双链RNA而引起的。他们还证明转录得到的单链RNA经纯化后注射线虫所引起的阻断作用十分微弱,而经纯化的双链RNA则能高效特异地阻断相应基因的表达,他们将此现象称为RNA干扰。1999年,Hunter[6]等的实验进一步验证了RNAi的存在。他们将dsRNA去除后,再将正义或反义的RNA注入线虫卵中,没有产生基因沉默现象。相反,如果将上述正义及反义RNA混合,经退火复性后得到的dsRNA注入线虫卵中可以显著地产生基因沉默现象,从而印证了Fire等提出的RNAi作用是由dsRNA引起的结论。2000年首次在果蝇中发现,通过核糖核酸酶可将长的dsRNA处理为21~23nt的短片段。2001年,首次报道了哺乳动物细胞中也有RNAi。2002年证明了用短的发夹结构RNA(shRNA)在哺乳动物细胞中可以诱导特异性的基因沉默[7]。2003年首次用RNAi技术对模型动物进行了治疗研究[8]。2006年诺贝尔医学奖没有坚持研究成果要经过数十年实践验证的“惯例”,破格授予美国科学家安德鲁•菲尔和克雷格•梅洛,以表彰他们1998年发现了RNAi现象。此后,人们在不同种属的生物中进行了广泛而深入的研究,结果证实dsRNA介导的RNAi现象存在于真菌、果蝇、拟南芥、锥虫、涡虫、水螅、斑马鱼、小鼠、大鼠、猴乃至人类等多种生物中[2]。2RNAi的作用机制目前关于基因沉默的假说认为,转录后水平的基因沉默,主要包括起始阶段、效应阶段和倍增阶段。2.1起始阶段外源性导入或由转基因、转座子、病毒感染等多种方式引入双链核糖核酸(dsRNA),在细胞内特异性与RNA酶Ⅲ(RNAaseⅢ核酸内切酶)Dicer结合,dsRNA被切割成21~23nt长度的带有3′端单链尾巴及磷酸化的5′端的短链dsRNA,即小干扰RNA(siRNA)。(以下图片均来自于陈莉等的文章《在医药领域中RNA干扰研究进展》)2.2效应阶段双链siRNA可以与含Argonauto(Ago)蛋白的核酶复合物结合形成RNA诱导沉默复合体(RNA-inducedsilencingcomplex,RISC)并被激活。在ATP供能情况下,激活的RISC将siRNA的双链分开,RISC中核心组分核酸内切酶Ago负责催化siRNA其中一条链去寻找互补的mRNA链,然后对其进行切割。反义链先与同源mRNA配对结合,然后RISC在距离siRNA3'端12个碱基的位置将mRNA切断降解,从而阻止靶基因表达,使基因沉默[9]。2.3倍增阶段siRNA在RNA依赖性RNA聚合酶(RdRP)的作用下,以mRNA为模板,siRNA为引物,扩增产生足够数量的dsRNA作为底物提供给Dicer酶,产生更多的siRNA,可再次形成RISC,并继续降解mRNA,从而产生级联放大效应。并作用于靶mRNA。如此反复倍增,从而使RNAi的作用进一步放大。因此少量的siRNA就可以产生高效的基因沉默效果[10]。3RNAi的设计及合成3.1siRNA的设计设计高效率的siRNA首先要通过NCBI、DDBJ、BMBL这3个基因序列数据库,检索相关的基因序列,获得靶向mRNA或cDNA序列,再就是合理设计siRNA。常规siRNA的设计原则是以成熟的mRNA为标准,若以DNA序列为参照,则最好选择cDNA转录区+50到+100以后的下游序列,两端的非翻译区不作为siRNA设计依据。siRNA二聚体的正义链和反义链各含21nt为佳,3'端为突出末端。3'凸端为尿苷(U),5'凹端为腺苷(A)的mRNA序列应作为首选。进行Gen-BankBLAST查询,确保所选siRNA编码不与其它基因同源[11]。不是mRNA的所有亚单位都能形成有效的siRNA,大约有60%~70%可以发挥沉默效应,这是由于5‘和3’-UTR有丰富的调控蛋白结合区域,产生UTR结合蛋白或翻译起始复合物均可能影响RISC结合mRNA,从而影响siRNA的效果,所以沉默效应率差异较大,针对一个靶基因需要设计3~4条siRNA,以保证能够筛选出一条有效序列[12]。3.2iRNA的合成方法制备siRNA的方法主要有化学合成法、体外转录法、酶消化法、体内转录法等。当已经找到最有效的siRNA时,适合以核苷酸单体为原料,通过化学方法合成两条互补的长约21~23nt的RNA单链,然后退火形成双链复合体,这种方法所获得的产物纯度、干扰效率高,合成简单,但是制备周期长,作用时间短,而且价格昂贵限制了其应用和推广[13]。体外转录法[14]是以两段互补的DNA为模板,在针对靶序列的正义链和反义链上游接上T7启动子,使用T7RNA聚合酶,各自在体外转录获得两条单链RNA,将两条单链退火后形成双链RNA,然后用RNA酶消化,所得产物经纯化后就是所需的双链RNA,此方法适用于筛选有效的siRNA,但不适用于对特定siRNA进行长期研究。酶消化法[15]是先在体外化学合成200~1000完整的目的基因长片段dsRNA,用细胞内形成的siRNA关键酶-Dicer酶或者RNaseⅢ进行消化,即可得到各种不同的针对同一目的基因的不同位点的siRNA混合物,然后将混合物转染至细胞内,能得到较高的抑制效率。该方法抑制率高,且省时省力,但此法产生的混合物可能导致非特异性抑制,另外在体外转录长链RNA有困难,Dicer酶费用较高[16],此方法不适用于长时间的研究项目,或者是需要一个特定的siRNA进行研究,特别是基因治疗。体内转录[17]是将siRNA的质粒、病毒表达载体或带有siRNA表达盒的PCR产物转入细胞,由细胞表达产生RNA干扰作用。siRNA表达载体常用能在哺乳动物细胞中表达shRNA的含有RNA聚合酶Ⅲ(polⅢ)启动子的载体[18],通过转染含有RNA聚合酶II/III的启动子U6或H1,及其下游一小段特殊结构的质粒或病毒载体到宿主细胞内,转录出shRNA,该RNA在细胞内被Dicer酶剪切成siRNA而发挥作用。该方法的优点是细胞特异性强,适用于基因功能的长时间研究[2]。siRNA表达框(siRNAexpreioncaettes,SECs)[17]是一种由PCR制备的siRNA表达模板,可直接转入细胞进行表达而无需事先克隆到载体中。利用引物延伸法进行PCR,产生包含1个RNA聚合酶III启动子U6或H1、一小段编码shRNA的DNA模板和1个RNA聚合酶III终止位点的表达框架,然后直接转染到细胞内。该方法为筛选有效的siRNA片段和合适的启动子提供了较为便捷的工具[2]。其主要缺点是PCR产物转染细胞的难度大,如有转染试剂能提高SECs的转染效率,这一方法将得到更为广泛的应用。