华南理工大学高数(上)期末考题参考答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1华南理工大学高数(上)期末考题参考答案一、填空题(每小题3分,共15分)1.设xy1arctan,则0xdydx41.2.xxx10)sin1(lime.3.已知△ABC的三个顶点的坐标为)1,1,0(),0,1,2(),1,0,1(CBA,则∠BAC26.4.曲线)1(ln21412exxxy的弧长等于)1(412e.5.02dxxex21.二、选择题(每小题3分,共15分)1.设,)(),()(2xxhxgxfdxd则)()]([Dxhfdxd.(A))(2xg;(B))(2xxg;(C))(22xgx;(D))(22xxg.2.设,275)(xxxf则0x时,(B).(A))(xf与x是等价无穷小量;(B))(xf与x是同阶但非等价无穷小量;(C))(xf是比x高阶的无穷小量;(D))(xf是比x低阶的无穷小量.3.设)(xg在),(上严格单调减少,)(xf在0xx处有极大值,则(A).(A))]([xfg在0xx处有极小值;(B))]([xfg在0xx处有极大值;(C))]([xfg在0xx处有最小值;(D))]([xfg在0xx处有既无极值也无最值;4.下列函数中,在定义域上连续的函数是(B)(A);0,0,0,sin)(xxxxxf(B);0,0,0,1sin)(xxxxxf(C);0,0,0,11)(xxxxxf(D).0,0,0,1)(xxxexfx25.若连续曲线)(1xfy与)(2xfy在],[ba上关于x轴对称,则积分dxxfdxxfbaba)()(21的值为(D)(A)dxxfba)(21;(B)dxxfba)(22;(C)dxxfxfba)]()([221;(D)0三、解答下列各题(每小题7分,共28分)1.设参数方程tduuuytx0222,1),1ln(,求22dxyd.解因为2121222tttttdtdxdtdydxdy所以ttdtttdttdtddxdxdyddxyd411221)]1[ln()2()(222222.求曲线xxey在拐点处的切线方程.解因为xxxeey,)2(xexeeeyxxxx,令0y得2x当)2,(x时,0y,当),2(x时,0y,且22)2(ey,则点)2,2(2e是曲线xxey的拐点;又22)]1([)2(exeyxx,所以曲线xxey在拐点处的切线方程是:)2(222xeey3.计算积分edxxx12ln.解eeeeexedxxxxdxxxeeee221)11(1]1[11]ln[ln1121124.dxxx221.解解法一dxxdxxdxxxdxxx2222221111111Cxxxx)121arcsin21(arcsin2(参看p201例21)Cxxx2121arcsin21解法二设txsin,则xdtdxcos,代入得3Cttdtttdtttdxxx2sin412122cos1coscossin1222CxxxCttt2121arcsin21cossin2121四、(8分)确定常数ba,的值,使函数0),arcsin(0,)(xaxxbexfx在0x处连续且可导.解由于)(xf在0x处连续)00()00()(lim0ffxfx,且bbefxx1)(lim)00(00,0)][arcsin(lim)00(00axfx所以01b即1b由于)(xf在0x处可导)0()0(ff,且1)1(lim)0()(lim)0(0000xbbexfxffxxxaxaxxbaxxfxffxxx)arcsin(lim)1()arcsin(lim)0()(lim)0(000000所以1a即1a,1b时)(xf在0x处连续且可导.五、(8分)已知)(xf的一个原函数是2xe,求dxxfx)(.解Ceexdxxfxxfdxxfxxx22][)()()(CxeCeexxxx)12(222222六、(8分)设)(xf在]1,0[上可导,且dxxxff12121)(2)0(.试证:存在)1,0(,使0)(2)()1(2ff.证由积分中值定理有2212121)()211(1)(21)(2)0(ffdxxxff]1,21[;设21)()(xxfxF则)(xF满足:①在],0[上连续;②在),0(内可导;③21)()()0()0(fFfF;4由洛尔定理,则至少存在一点),0(,使0)(F,即)1,0(),0(0)1()(2)()1(222ff,即证0)(2)()1(2ff)1,0(七、(8分)证明方程1011022dttxtx在)1,0(内有且仅有一个实根.证设)(xf1011022dttxtx则)(xf在]1,0[上连续,在)1,0(内可导,且)0(0)11(1)(23022022xxxdtttdtttxxfxx即)(xf在]1,0[上单调递增;又0101010110)0(0022dtttf101)111(10111)1(1021022dttdtttf0115.04109101arctan110x由零点定理知,方程在)1,0(内有且仅有一个实根.八、(10分)已知曲线)0(axay与曲线xyln在点),(00yx有公共切线,求(1)常数a的值及切点;(2)两曲线与x轴围成的平面图形绕x轴旋转所得旋转体的体积.解(1)由条件知)0(00xx满足0000212lnxxaxxa,解之得ea1.(2)由(1)知20ex,则两曲线与x轴围成的平面图形绕x轴旋转所得旋转体的体积5dxxdxexVee221220)2ln()(由于2][2120220222exedxexee,22211212ln2)(ln)(lneeexdxxxdxx)1(2]ln[242122exxxee,所以2)]1(2412[22eeV

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功