2018年云南省玉溪市高考数学模拟试卷(04)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页(共15页)2018年云南省玉溪市高考数学模拟试卷(04)一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.(5分)已知i为虚数单位,则复数﹣1+i的模等于()A.B.C.D.22.(5分)i是虚数单位,复数=()A.2+iB.2﹣iC.﹣1+2iD.﹣1﹣2i3.(5分)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1B.2C.1或2D.﹣14.(5分)如图,D是△ABC的边AB的中点,则向量等于()A.B.C.D.5.(5分)已知向量=(4,﹣2),向量=(x,5),且∥,那么x的值等于()A.10B.5C.D.﹣106.(5分)已知、是两个单位向量,那么下列命题中的真命题是()A.B.C.D.7.(5分)下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.D.8.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()第2页(共15页)A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(5分)有以下四个命题:①如果且,那么;②如果,那么或;③△ABC中,如果,那么△ABC是钝角三角形;④△ABC中,如果,那么△ABC为直角三角形.其中正确命题的个数是()A.0B.1C.2D.310.(5分)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ=B.ω=1,φ=﹣C.ω=2,φ=D.ω=2,φ=﹣二、填空题(本大题共4小题,每小题5分,满分20分.)11.(5分)设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为.12.(5分)已知向量满足与的夹角为60°,则=.13.(5分)已知两个单位向量,的夹角为,若向量=,,则=.14.(5分)已知向量=(1,﹣3),=(4,2),若⊥(+λ),其中λ∈R,第3页(共15页)则λ=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(12分)已知函数f(x)=4cosxsin(x)﹣1.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.16.(12分)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各生产多少箱?17.(14分)已知函数,x∈R,且(1)求A的值;(2)设,,,求cos(α+β)的值.18.(14分)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.第4页(共15页)19.(14分)在海岸A处,发现北偏东45°方向,距离Anmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜.(1)求线段BC的长度;(2)求∠ACB的大小;(参考数值:)(3)问缉私船沿北偏东多少度的方向能最快追上走私船?20.(14分)已知函数f(x)=ax3﹣+1(x∈R),其中a>0.(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若在区间[﹣]上,f(x)>0恒成立,求a的取值范围.第5页(共15页)2018年云南省玉溪市高考数学模拟试卷(04)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分.每小题给出的四个选项中,只有一项是符合题目要求.)1.(5分)已知i为虚数单位,则复数﹣1+i的模等于()A.B.C.D.2【解答】解:.所以,复数﹣1+i的模等于.故选C.2.(5分)i是虚数单位,复数=()A.2+iB.2﹣iC.﹣1+2iD.﹣1﹣2i【解答】解:复数===2﹣i故选B.3.(5分)若复数(a2﹣3a+2)+(a﹣1)i是纯虚数,则实数a的值为()A.1B.2C.1或2D.﹣1【解答】解:由a2﹣3a+2=0得a=1或2,且a﹣1≠0得a≠1∴a=2.故选B.4.(5分)如图,D是△ABC的边AB的中点,则向量等于()A.B.C.D.第6页(共15页)【解答】解:∵D是△ABC的边AB的中点,∴=(+)∵=﹣,∴=(﹣﹣)=﹣+故选:A5.(5分)已知向量=(4,﹣2),向量=(x,5),且∥,那么x的值等于()A.10B.5C.D.﹣10【解答】解:∵=(4,﹣2),=(x,5),且∥,∴4×5=﹣2x,解之得x=﹣10故选:D6.(5分)已知、是两个单位向量,那么下列命题中的真命题是()A.B.C.D.【解答】解:根据题意,设θ为、的夹角,据此依次分析选项:对于A、、是两个单位向量,则、的方向不一定相同,则=不一定成立,A错误;对于B、•=||||cosθ,当、不垂直时,•≠0,B错误;对于C、•=||||cosθ=cosθ≤1,C错误;对于D、、是两个单位向量,即||=||,则有2=2,D正确;故选:D.7.(5分)下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2第7页(共15页)C.D.【解答】解:sin15°cos15°=sin30°=,排除A项.cos2﹣sin2=cos=,排除B项.==,排除C项由tan45°=,知选D.故选D8.(5分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(5分)有以下四个命题:①如果且,那么;②如果,那么或;③△ABC中,如果,那么△ABC是钝角三角形;④△ABC中,如果,那么△ABC为直角三角形.其中正确命题的个数是()A.0B.1C.2D.3【解答】解:①∵且,∴,与不一定相等,故①第8页(共15页)不正确;②∵,∴,或,或,故不正确;③在△ABC中,∵,∴,∴∠ABC是钝角,故△BAC是钝角三角形,因此正确;④在△ABC中,∵,∴,即AB⊥BC,∴∠ABC=90°,∴△ABC是直角三角形,故正确.综上可知:只有③④正确,即正确命题的个数是2.故选C.10.(5分)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ=B.ω=1,φ=﹣C.ω=2,φ=D.ω=2,φ=﹣【解答】解:由图象可知:T==π,∴ω=2;(,1)在图象上,所以2×+φ=,φ=﹣.故选D.二、填空题(本大题共4小题,每小题5分,满分20分.)11.(5分)设复数z满足(1+i)z=2,其中i为虚数单位,则z的虚部为﹣1.【解答】解:由(1+i)z=2,得:.所以,z的虚部为﹣1.故答案为﹣1.第9页(共15页)12.(5分)已知向量满足与的夹角为60°,则=.【解答】解:根据题意,•=||||cos60°=1,2=||2﹣4•+4||2=13,则2=,故答案为.13.(5分)已知两个单位向量,的夹角为,若向量=,,则=﹣12.【解答】解:由已知可得,=∴=()•()=6=6﹣4×﹣16=﹣12故答案为:﹣1214.(5分)已知向量=(1,﹣3),=(4,2),若⊥(+λ),其中λ∈R,则λ=.【解答】解:∵⊥(+λ),∴•(+λ)=0.∴(1,﹣3)•(4+λ,2﹣3λ)=0,即(4+λ)﹣3(2﹣3λ)=0.解得λ=.故答案为.第10页(共15页)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(12分)已知函数f(x)=4cosxsin(x)﹣1.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.【解答】解:(Ⅰ)∵f(x)=4cosxsin(x+)﹣1,=4cosx(sinx+cosx)﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.16.(12分)某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各生产多少箱?第11页(共15页)【解答】解:设甲车间加工原料x箱,乙车间加工原料y箱,…(1分)根据题意,得约束条件…(4分)画出可行域.…(7分)目标函数z=280x+200y,…(8分)即,…(9分)作直线并平移,得直线经过点A(15,55)时z取最大值.…(11分)所以当x=15,y=55时,z取最大值.…(12分)17.(14分)已知函数,x∈R,且(1)求A的值;(2)设,,,求cos(α+β)的值.【解答】解:(1),解得A=2第12页(共15页)(2),即,即因为,所以,,所以.18.(14分)如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.【解答】解:(1)证明:因为DE⊥EF,CF⊥EF,所以四边形CDEF为矩形,由AD=5,DE=4,得AE=GE==3,由GC=4,CF=4,得BF=FG==4,所以EF=5,在△EFG中,有EF2=GE2+FG2,所以EG⊥GF,又因为CF⊥EF,CF⊥FG,得CF⊥平面EFG,所以CF⊥EG,所以EG⊥平面CFG,即平面DEG⊥平面CFG.(2)解:在平面EGF中,过点G作GH⊥EF于H,则GH==,因为平面CDEF⊥平面EFG,得GH⊥平面CDEF,=16.第13页(共15页)19.(14分)在海岸A处,发现北偏东45°方向,距离Anmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜.(1)求线段BC的长度;(2)求∠ACB的大小;(参考数值:)(3)问缉私船沿北偏东多少度的方向能最快追上走私船?【解答】解:(1)在△ABC中,∠CAB=45°+75°=120°,…(1分)由余弦定理,得BC2=AB2+AC2﹣2AB•ACcos∠CAB…(2分)=+22﹣2×(﹣1)×2×(﹣)=6,…(3分)所以,BC=.…(4分)(2)在△ABC中,由正弦定理,得=,所以,sin∠ACB=…(6分)==.…(7分)又∵0°<∠ACB<60°,∴∠ACB=15°.…(8分)(3)设缉私船用th在D处追上走私船,如图,则有CD=10t,BD=10t.第14页(共15页)在△ABC中,又∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=…(8分)==.…(10分)∴∠BCD=30°,又因为∠ACB=15°…(12

1 / 15
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功