高数C2习题册答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

h习题一定积分的概念与性质,微积分的基本公式一、单项选择题1、D2、B3、C4、C*5、D二、填空题1.02.2121222xedxe3.04.1x6.()()fbfa7.48.三、求解题1.求下列函数的导数(1)解:4()sin12xxx(2)解:2324262()cos2cos3xxxexxexx2.求下列极限:*(1)3x00xxdtt22arcsinlim*(2))2(1lim22nnnnn解:2030arcsin2limxxtdtx解:221lim(2)nnnnn202arcsin2lim3xxxx112lim()nnnnnn02arcsin24lim33xxx11limnniinn2030arcsin2limxxtdtx10xdx20arcsin22lim3xxxx2302arcsin24lim33xxx故极限不存在。3.证明:)(x=dttftxxa2)()(=22(2)()xaxxttftdt=22()2()()xxxaaaxftdtxtftdttftdt222()2()()2()2()()xxaaxxftdtxfxtftdtxfxxfx=2xadttftx)()(4.解:(1)xyex,令0y,得1x,当1x时,0y;当1x时,0y,所以,函数y在(,1)内单调递减,在(1,)单调递增,在1x点处取得极小值10(1)(1)tyetdt=2e.习题二定积分的换元积分法,分部积分法一、计算题1.计算下列定积分(1)323)1(dxx(2)10212dttet解:原式=332(1)(1)xdx解:原式=2112201()2tedt=4321(1)4x=65421120te121e(3)03)sin1(dxx(4)411dxxx解:原式300sindxxdx解:原式411(1)dxxx20(1cos)cosxdx41121dxx301(coscos)3xx412ln(1)x4332ln2(5)312211dxxx(6)20xdx2xsin解:令tanxt解:原式201cos22xdx原式23224sectan1tantdttt22001(cos2cos2)2xxxdx324sectantdtt324cossintdtt2011(sin2)222x3241sinsindtt341sint42223(7)230arccosxdx(8)exdx1lnsin解:原式3322020arccos1xxxdxx解:原式111sinlncoslneexxxxdxx3222031112621dxx111sin1coslnsinlneeexxxxdxx32203121122x1sin1cos11sinlneeexdx31122故11sinln(1sin1cos1)2exdxee2.解:令1xt,则20)1(dxxf11()ftdt01101111tdtdtet令teu,则1011111(1)tedtdueuu1111()1eduuu11ln1euuln2ln(1)e11001ln(1)ln21dttt20)1(dxxfln(1)e二、证明题1.证明:令1xt,则10011(1)nmmnxxdxttdt10(1)mnttdt10(1)mnxxdx2.证明:令xt,则()()bbbbfxdxftdt()bbfxdx3.证明:令1xt,则111222111()11xxdxdtxtt12111xdtt12111xdxx4.证明:0()()xxftdt,令tu,则00()()()xxxftdtfudu又()fu是奇函数0()xfudu)x(即xdttfx0)()(是偶函数.习题三广义积分,定积分的几何应用一、选择题1.B2.C3.D二、填空题1.1,1,11;1,1,112.,6,(1)r.三、计算题1.判断下列反常积分是否收敛,若收敛计算其值(1)dxxx1e2ln(2)dxx1x11002解:原式21lnlnedxx解:原式21001(1)2(1)11xxdxx11lnex98991001121()(1)111dxxxx97111()29798994(3)1011dxx(4)10lnxdx解:原式101(1)1dxx解:原式10(ln1)xx11202(1)x212.解:2)(ln1dxxxk21ln(ln)kdxx212lnln11(ln)11kxkxkk11ln211kkkk发散令1(ln2)()1xfxx,则112(ln2)lnln2(1)(ln2)()(1)xxxfxx11lnln2x为驻点,且111lnln2x时,()0fx;11lnln2x时,()0fx,所以11lnln2k时,2)(ln1dxxxk1(ln2)1kk取得最小值。3.解:2231222222001(2)242xxxedxxedx23()82=2164.解:123(32)Sxxdx3235.解:曲线xyln在00(,ln)xx点处的切线为0001ln()yxxxx,则过原点的切线为1ln()yexee,即xye故0(ln)exSxdxe2e6.解:211(2)Sxdxx1ln227.解:812230[2()]Vydy6458.解:412302(2)Vxxdx5221习题四定积分及其应用总习题一、填空题1.12.2()afa3.0xxtxeedt4.05.16.0k7.08*.1二、计算题1.解:方程两边对x求导,得2()()fxxfxx故2()1xfxx,代入原方程有212220112xxttxdttdtctt即222211ln(1)(1ln2ln(1)222xxxxc那么1(ln21)2c2.解:223341max(1,,)11113xxxxxxx311323234411max(1,,)1Ixxdxxdxdxxdx433.解:111ln()1xtfdtxt,令1tu,则211ln11()()11xufduxuu21lnxuduuu故211lnln()()()1xttfxfdtxttt1lnxtdtt21lnlnln2xxtdt4*.解:令tu,则0sinsin()xxtufxdtdutu00sin()xufxdxdudxu0sinuudxduu25.解:20xVedx2三、证明题1.证明:令tabx,则()()baabfabxdxftdt()baftdt()bafxdx2.证明:令2xt,则202sinsin()2nnxdxtdt22cosntdt202cosntdt令2tu,则0nxdxsin202cosntdt022cos()2nudu202sinnudu202sinnxdx3.证法一:对右边,由定积分的分部积分公式:x0t0dtduuf))((0000[()][()]xtxttfudutdfudu00()()xxxfudutftdt00()()xxxfudutftdt00()()xxxftdttftdt0()()xftxtdt左边证法二:交换二次积分的顺序:x0t0dtduuf))((0(())xxufudtdu0()()xfuxudu0()()xftxtdt4.证明:02()()()xfxxftdtFxx2()()fxxxfx,其中0xa,(积分中值定理)又因为0)(xf,即()fx单调递减,故()()fxf,则()0Fx,那么)(xF在(0,a)内单调减少。习题五微分方程的基本概念,一阶微分方程一、单项选择题1.C2.C3.D4.D二、填空题1.导数或微分,常。2.3。3.阶。4.初始。5.22xxyCexe。*6.12y。三、计算题1.求下列微分方程的通解:(1)02yyx(2)2211yyx解:20yyx解:2211dydxyx22dxxyCeCx2211dydxyxsinsinarcyarcxC(3)yxyxdxdy34(4)xxyy62解:431ydyxydxx解:22(6)xdxxdxyexedxc令yux,则dyduuxdxdx23xyCe即431duuuxdxu21(2)udxduux故通解为ln(2)02xyxCyx(5)xxydxdy6(6)22xyxydxdy解:11(6)dxdxxxyexedxc解:2112dyxxydxy(6)yxxC令1uy,则21dudydxydx2duxuxdx2112xuCey2.求下列微分方程满足所给初始条件的特解:(1)解:yxedyedxxyeeC,又00xy,则2C,故特解为2xyee(2)解:2dxxydy,则112()dydyxeyedyC222yxyyCe,又10yx,则3C,故特解为2223yxyye(3)解:12yyx,则11(2)dxdxxxyeedxC,故Cyxx,又21xy,则1C,特解为1yxx3.解:设所求曲线方程为()yfx,那么2yxy,且(0)0f,由2yyx得11(2)dxdxyexedxC,即22xyxCe又0x时,0y,故2C,所以222xyxe4.设()fx可微且满足关系式0[2()1]()1xftdtfx,求()fx.解:方程两边同时求导,得2()1()fxfx,解之,21()2xfxCe又00[2()1](0)1ftdtf,即(0)1f故12C,那么211()22xfxe习题六可降阶的二阶微分方程,二阶常系数线性微分方程一、选择题1.A2.D二、填空题1.2212xxyCeCxe。2.4212334yxCxCxC。3.122lnxxxycecxexxex。4.*()xyaxbe5.*cossinyaxbx二、求解题1.求微分方程的通解。(1)xxey(2)yyx解:xydxxedx解:令yp,则yp,即ppx1xxyxeeCxxxepepxexxepxe

1 / 44
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功