PLGA聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolicacid),PLGA)由两种单体——乳酸和羟基乙酸随机聚合而成,是一种可降解的功能高分子有机化合物,具有良好的生物相容性、无毒、良好的成囊和成膜的性能,被广泛应用于制药、医用工程材料和现代化工业领域。在美国PLGA通过FDA认证,被正式作为药用辅料收录进美国药典。不同的单体比例可以制备出不同类型的PLGA,例如:PLGA75:25表示该聚合物由75%乳酸和25%羟基乙酸组成。所有的PLGA都是非定型的,其玻璃化温度在40-60°C之间。纯的乳酸或羟基乙酸聚合物比较难溶,与之不同的是,PLGA展现了更为广泛的溶解性,它能够溶解于更多更普遍的溶剂当中,如:氯化溶剂类,四氢呋喃,丙酮或乙酸乙酯等。破坏酯键会导致PLGA的降解,降解程度随单体比不同而有差异,乙交酯比例越大越易降解。也存在特例,当两种单体比为50:50时,降解的速度会更快,差不多需要两个月。PLGA的降解产物是乳酸和羟基乙酸,同时也是人代谢途径的副产物,所当它应用在医药和生物材料中时不会有毒副作用。当然,乳糖缺陷者除外。通过调整单体比,进而改变PLGA的降解时间,这种方法已广泛应用于生物医学领域中,如:皮肤移植,伤口缝合,体内植入,微纳米粒等。市售的治疗晚期前列腺癌的LupronDepot即是用PLGA充当药物载体。聚乳酸-乙醇酸(PLGA);制备;降解SynthesisandDegradationofPoly(lactic-co-glycolicacid)ZhouChao,YanYuhua.BiomaterialsandEngineeringResearchCenter,WuhanUniversityofTechnology,Wuhan430070[Abstract]Methodsoftenusedforsynthesizingpoly(lactic-co-glycolicacid)wasdescribedinthispaper.Thedegradationmechanismofpoly(lactic-co-glycolicacid)wasalsodiscussed.[Keywords]poly(lactic-co-glycolicacid);synthesis;degradation聚乳酸-乙醇酸(PLGA)有良好的生物相容性和生物降解性能且降解速度可控,在生物医学工程领域有广泛的用途。目前已被制作为人工导管,药物缓释载体,组织工程支架材料[1,2]。各种PLGA药物微球制备应用多见报道,其中PLGA微球作为蛋白质、酶类药物的载体,是研究的热点[3~8]。寻求一种成本低廉工艺简单的生产无(低)生物毒性的PLGA的工艺,具有重大的意义。聚乳酸-乙醇酸的合成1.1传统开环聚合法制备无规聚乙交酯丙交酯(Ran2PLGA)目前PLGA的制备多采用开环聚合法[9,10,11]。常见的开环聚合是将乙醇酸和乳酸分别脱水环化,合成乙交酯(GA)、丙交酯(LA)两种单体,再由GA和LA开环聚合得PLGA无规共聚物。反应示意如下图1:图1,开环聚合法制备无规聚乙交酯丙交酯反应示意图1.2三步法制备交替聚乙交酯、丙交酯(Alt2PLGA)[12,13]该法也是一种开环聚合法,是将乙醇酸(实验中用氯乙酸)和乳酸两种聚合单体制成六元环状交酯,再开环聚合得PLGA的交替共聚物。具体过程如下:微球(microsphere)是指药物分散或被吸附在高分子、聚合物基质中而形成的微粒分散体系。制备微球的载体材料很多,主要分为天然高分子微球(如淀粉微球,白蛋白微球,明胶微球,壳聚糖等)和合成聚合物微球(如聚乳酸微球)纳米微球一般是高分子聚合而成,多是树脂,有乳液聚合比较多,聚苯乙烯,聚丙烯酸。。。目前药剂学上关于微球(microspheres)的定义是指药物溶解或分散于高分子材料中形成的微小球状实体,球形或类球形,一般制备成混悬剂供注射或口服用。微球粒径范围一般为1~500um,小的可以是几纳米,大的可达800um,其中粒径小于500nm的,通常又称为纳米球(nanospheres)或纳米粒(nanoparticles),属于胶体范畴。bloodbrainbarrier;血脑屏障是指脑毛细血管阻止某些物质(多半是有害的)由血液进入脑组织的结构。血液中多种溶质从脑毛细血管进入脑组织,有难有易;有些很快通过,有些较慢,有些则完全不能通过,这种有选择性的通透现象使人们设想可能有限制溶质透过的某种结构存在,这种结构可使脑组织少受甚至不受循环血液中有害物质的损害,从而保持脑组织内环境的基本稳定,对维持中枢神经系统正常生理状态具有重要的生物学意义。水凝胶(Hydrogel)是以水为分散介质的凝胶。具有网状交联结构的水溶性高分子中引入一部分疏水基团和亲水残基,亲水残基与水分子结合,将水分子连接在网状内部,而疏水残基遇水膨胀的交联聚合物。是一种高分子网络体系,性质柔软,能保持一定的形状,能吸收大量的水。凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。这些高分子按其来源可分为天然和合成两大类。天然的亲水性高分子包括多糖类(淀粉、纤维素、海藻酸、透明质酸,壳聚糖等)和多肽类(胶原、聚L-赖氨酸、聚L-谷胺酸等)。合成的亲水高分子包括聚乙烯、醇、丙烯酸及其衍生物类(聚丙烯酸,聚甲基丙烯酸,聚丙烯酰胺,聚N-聚代丙烯酰胺等)。前体药物(prodrug),也称前药、药物前体、前驱药物等,是指经过生物体内转化后才具有药理作用的化合物。前体药物本身没有生物活性或活性很低,经过体内代谢后变为有活性的物质,这一过程的目的在于增加药物的生物利用度,加强靶向性,降低药物的毒性和副作用。目前前体药物分为两大类:载体前体药物(carrier-prodrug)和生物前体(bioprecursor)。此外农药中也有许多前体药物。研究历史在前体药物提出前,历史上偶然发现的许多前体药物都在应用,如阿斯匹林和水杨酸的作用。1958年,Albert在英国自然杂志上发表文章(Chemicalaspectsofselectivetoxicity)提出了前体药物的概念,之后Harper提出的“药物潜伏化”总结了前提药物设计的思想,即通过对生物活性化合物的化学修饰形成新的化合物,新化合物在生物体内酶的作用下释放出有活性的母体化合物并发挥药理作用。载体是载有药物,而前药的代谢产物是药物~~实体瘤的高通透性和滞留效应实体瘤的高通透性和滞留效应(enhancedpermeabilityandretentioneffect,EPR)正常组织中的微血管内皮间隙致密、结构完整,大分子和脂质颗粒不易透过血管壁,而实体瘤组织中血管丰富、血管壁间隙较宽、结构完整性差,淋巴回流缺失,造成大分子类物质和脂质颗粒具有选择性高通透性和滞留性,这种现象被称作实体瘤组织的高通透性和滞留效应,简称EPR效应。EPR效应促进了大分子类物质在肿瘤组织的选择性分布,可以增加药效并减少系统副作用。一、血管间隙大,导致渗透增强二、淋巴循环受限,导致滞留增强。