IE675GameTheoryLectureNoteSet1WayneF.Bialas1Friday,March30,20011INTRODUCTION1.1Whatisgametheory?Gametheoryisthestudyofproblemsofconflictandcooperationamongindependentdecisionmakers.Gametheorydealswithgamesofstrategyratherthangamesofchance.Theingredientsofagametheoryproblemincludeplayers(decisionmakers)choices(feasibleactions)payoffs(benefits,prizes,orawards)preferencestopayoffs(objectives)Weneedtoknowwhenonechoiceisbetterthananotherforaparticularplayer.1.2ClassificationofgametheoryproblemsProblemsingametheorycanbeclassifiedinanumberofways.1.2.1Staticvs.dynamicgamesIndynamicgames,theorderofdecisionsareimportant.Question1.1.Isiteverreallypossibletoimplementstaticdecisionmakinginpractice?1DepartmentofIndustrialEngineering,UniversityatBuffalo,342BellHall,Box602050,Buffalo,NY142602050USA;Email:bialas@buffalo.edu;Web:˜bialas.CopyrightcMMIWayneF.Bialas.AllRightsReserved.Duplicationofthisworkisprohibitedwithoutwrittenpermission.ThisdocumentproducedMarch30,2001at2:31pm.111.2.2Cooperativevs.noncooperativeInanoncooperativegame,eachplayerpursueshis/herowninterests.Inacooperativegames,playersareallowedtoformcoalitionsandcombinetheirdecisionmakingproblems.NoncooperativeCooperativeMathprogrammingCooperativeStaticNoncooperativeGameGameTheoryTheoryCooperativeDynamicControlTheoryDynamicGamesNote1.1.Thisareaofstudyisdistinctfrommulticriteriadecisionmaking.Flowofinformationisanimportantelementingametheoryproblems,butitissometimesexplicitlymissing.noisyinformationdeception1.2.3Relatedareasdifferentialgamesoptimalcontroltheorymathematicaleconomics1.2.4Applicationareascorporatedecisionmakingdefensestrategymarketmodellingpublicpolicyanalysisenvironmentalsystemsdistributedcomputingtelecommunicationsnetworks121.2.5Theoryvs.simulationThemathematicaltheoryofgamesprovidesthefundamentallawsandproblemstructure.Gamescanalsobesimulatedtoassesscomplexeconomicsystems.1.3SolutionconceptsThenotionofa“solution”ismoretenuousingametheorythaninotherfields.Definition1.1.Asolutionisasystematicdescriptionoftheoutcomesthatmayemergefromthedecisionproblem.optimality(forwhom??)feasibilityequilibria1.4Gamesinextensiveform1.4.1Example:MatchingPenniesPlayer1:ChooseHorTPlayer2:ChooseHorT(notknowingPlayer1’schoice)Ifthecoinsarealike,Player2wins1centfromPlayer1Ifthecoinsaredifferent,Player1wins1centfromPlayer2Writteninextensiveform,thegameappearsasfollows13Player1Player2InformationSet(-1,1)(1,-1)(1,-1)(-1,1)21SInordertodealwiththeissueofPlayer2’sknowledgeaboutthegame,weintroducetheconceptofaninformationset.Whenthegame’sprogressreachesPlayer2’stimetomove,Player2issupposedtoknowPlayer1’schoice.Thesetofnodes,S21,isaninformationsetforPlayer2.Aplayeronlyknowsthepossibleoptionsemanatingfromaninformation.Aplayerdoesnotknowwhichnodewithintheinformationsetistheactualnodeatwhichtheprogressofplayresides.Therearesomeobviousrulesaboutinformationsetsthatwewillformallydescribelater.14Forexample,thefollowingcannotoccur...Player1Player221S7KL FDQQR KDSSHQDefinition1.2.Aplayerissaidtohaveperfectinformationifallofhis/herinformationsetsaresingletons.Player1Player2 JDP ZLW SHUIHF LQIRUPDWLRQ15Definition1.3.AstrategyforPlayeriisafunctionwhichassignstoeachofPlayeri’sinformationsets,oneofthebrancheswhichfollowsarepresentativenodefromthatset.Example1.1.AstrategyΨwhichhasΨ(S21)=HwouldtellPlayer2toselectHeadswhenhe/sheisininformationsetS21.1.5Gamesinstrategicform1.5.1Example:MatchingPenniesConsiderthesamegameasaboveandthefollowingmatrixofpayoffs:Player2HTPlayer1H(1,1)(1,1)T(1,1)(1,1)TherowsrepresentthestrategiesofPlayer1.ThecolumnsrepresentthestrategiesofPlayer2.Distinguishactionsfromstrategies.Thematchingpenniesgameisanexampleofanoncooperativegame.1.6CooperativegamesCooperativegamesallowplayerstoformcoalitionstosharedecisions,informationandpayoffs.Forexample,ifwehaveplayersetN=f1;2;3;4;5;6gApossiblecoalitionstructurewouldbeff1;2;3g;f4;6g;f5ggOftenthesegamesaredescribedincharacteristicfunctionform.Acharacteristicfunctionisamappingv:2N!Randv(S)(whereSN)isthe“worth”ofthecoalitionS.161.7DynamicgamesDynamicgamescanbecooperativeornoncooperativeinform.Oneclassofcooperativedynamicgamesarehierarchical(organizational)games.Considerahierarchyofplayers,forexample,PresidentVicePresident...WorkersEachlevelhascontroloverasubsetofalldecisionvariables.Eachmayhaveanobjectivefunctionthatdependsonthedecisionvariablesofotherlevels.Supposethatthetoplevelmakeshis/herdecisionfirst,andthenpassesthatinformationtothenextlevel.Thenextlevelthenmakeshis/herdecision,andtheplayprogressesdownthroughthehierarchy.Thekeyingredientintheseproblemsispreemption,i.e.,the“frictionofspaceandtime.”Evenwheneverythingislinear,suchsystemscanproducestable,inadmissiblesolutions(Chew).stable:Noonewantstounilaterallymoveawayfromthegivensolutionpoint.inadmissible:Therearefeasiblesolutionpointsthatproducebetterpayoffsforallplayersthanthegivensolutionpoint.17IE675GameTheoryLectureNoteSet2WayneF.Bialas1Friday,March30,20012TWOPERSONGAMES2.1TwoPersonZeroSumGames2.