线性代数习题册解答·第一章行列式53克莱姆法则·综合练习(第一章)一、用克莱姆法则解方程组01123253224254321432143214321xxxxxxxxxxxxxxxx解:系数行列式为14281273532181207350321011111121351324121111113121423rrrrrrD且142112105132412211151D284112035122412111512D426110135232422115113D14202132132212151114D故原方程组的解为111DDx222DDx333DDx144DDx二、当取何值时,齐次方程组0)1(0)3(2042)1(321321321xxxxxxxxx有非零解?解:要使得题设方程组有非零解,只需其系数行列式为零.即06511113242123D解得3,2,0321.综上述,故当3,2,0时原方程组有非零解.线性代数习题册解答·第一章行列式6三、用数学归纳法证明nDncoscos2100000cos210001cos210001cos.证明:(1)当1n时,显然有cos1D.原式成立.(2)假设当1kn时原式成立,即有)1cos(1kDk.(3)下面证明当kn时原式成立.将kD按照第k行展开,有)2cos()1cos(cos2cos221kkDDDkkkkkkkcos)2cos()2cos(cos由数学归纳法,原式得证!四、证明nnnnnnnaxaxaxaxaaaaxxx1111221100000100001证明:(用归纳法)(1)当2n时,有2121211axaxaxaxaxD.即原式成立.(2)假设当kn时原式成立.(3)下面证明当1kn时原式成立.将1kD按照第1列展开,有kkkkkkkkkkxxaaxaaaaxxxxD100001000000100001)1(100000100001121221111111)()1()1(kkkkkkkkkaaxaxaxxaxD12111kkkkkaxaxaxax即当1kn时原式成立.由数学归纳法,原式得证!