第1页(共20页)北师大版七年级下册数学期末试卷一.选择题(共10小题)1.计算:(﹣2a)2•(﹣3a)3的结果是()A.﹣108a5B.﹣108a6C.108a5D.108a62.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=bB.a=0C.a=﹣bD.b=03.下列各式能用平方差公式计算的是()①(x﹣2y)(2y+x);②(x﹣2y)(﹣x﹣2y);③(﹣x﹣2y)(x+2y);④(x﹣2y)(﹣x+2y).A.①②B.②③C.①③D.③④4.已知a﹣b=3,则代数式a2﹣b2﹣6b的值为()A.3B.6C.9D.125.不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数B.零C.负数D.非负数6.已知x﹣=2,则代数式5x2+﹣3的值为()A.27B.7C.17D.27.如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°8.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cmB.7cm,4cm,2cmC.3cm,4cm,8cmD.3cm,3cm,4cm9.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EFB.BC=EF,AC=DFC.∠A=∠D,∠B=∠ED.∠A=∠D,BC=EF10.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()第2页(共20页)A.44°B.66°C.88°D.92°二.填空题(共10小题)11.若(m﹣2)2=3,则m2﹣4m+6的值为.12.如果二次三项式x2﹣2(m+1)x+16是一个完全平方式,那么m的值是.13.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有(填写所有正确的序号).14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.如图,AD是△ABC的中线,G是AD上的一点,且AG=2GD,连接BG,若S△ABC=6,则图中阴影部分面积是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.一副三角板,如图所示叠放在一起,则图中∠α的度数是.18.如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC=.19.将△ABC沿着平行于BC的直线折叠,点A落到点A′,若∠C=120°,∠A=26°,则∠A′DB的度数为.20.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是.第3页(共20页)三.解答题(共10小题)21.计算:x(x﹣2)﹣(x+2)(x﹣2),其中x=.22.(1)计算:(﹣2)2+2×(﹣3)+20160.(2)化简:(m+1)2﹣(m﹣2)(m+2).23.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.24.如图,直线AB与CD相交于点O,∠AOM=90°.(1)如图1,若OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.第4页(共20页)25.已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.AD与BE平行吗?为什么?解:AD∥BE,理由如下:∵AB∥CD(已知)∴∠4=()∵∠3=∠4(已知)∴∠3=()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即=∴∠3=()∴AD∥BE()26.某剧院的观众席的座位为扇形,且按下列分式设置:排数(x)1234…座位数(y)50535659…(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.27.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=35°,则∠CAO=°.第5页(共20页)28.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.29.如图,在△ABC中,AB=AC,点D是BC的中点,BF⊥AC于点F,交AD于点E,∠BAC=45°.求证:△AEF≌△BCF.30.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.第6页(共20页)北师大版七年级下册数学期末试卷参考答案与试题解析一.选择题(共10小题)1.(2016•余干县三模)计算:(﹣2a)2•(﹣3a)3的结果是()A.﹣108a5B.﹣108a6C.108a5D.108a6【分析】根据积的乘方等于乘方的积,可得单项式的乘法;根据单项式乘单项式,系数乘系数,同底数的幂相乘;可得答案.【解答】解:(﹣2a)2•(﹣3a)3=(4a2)•(﹣27a3)=﹣108a5.故选:A.【点评】本题考查了单项式乘单项式,熟记法则并根据法则计算是解题关键.2.(2016•海淀区校级模拟)如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=bB.a=0C.a=﹣bD.b=0【分析】把式子展开,找到所有x项的所有系数,令其为0,可求出m的值.【解答】解:∵(x+a)(x+b)=x2+ax+bx+ab=x2+(a+b)x+ab.又∵结果中不含x的一次项,∴a+b=0,即a=﹣b.故选C.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.3.(2016春•固镇县期末)下列各式能用平方差公式计算的是()①(x﹣2y)(2y+x);②(x﹣2y)(﹣x﹣2y);③(﹣x﹣2y)(x+2y);④(x﹣2y)(﹣x+2y).A.①②B.②③C.①③D.③④【分析】运用平方差公式(a+b)(a﹣b)=a2﹣b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【解答】解:①中x是相同的项,互为相反项是﹣2y与2y,符合平方差公式的结构特征,能用平方差公式计算;②中﹣2y是相同的项,互为相反项是x与﹣x,符合平方差公式的结构特征,能用平方差公式计算;③中不存在相同的项,不符合平方差公式的结构特征,不能用平方差公式计算;④中不存在相同的项,不符合平方差公式的结构特征,不能用平方差公式计算.故选A.【点评】本题考查了平方差公式的应用,熟记公式是解题的关键.4.(2016•重庆校级二模)已知a﹣b=3,则代数式a2﹣b2﹣6b的值为()A.3B.6C.9D.12第7页(共20页)【分析】由a﹣b=3,得到a=b+3,代入原式计算即可得到结果.【解答】解:由a﹣b=3,得到a=b+3,则原式=(b+3)2﹣b2﹣6b=b2+6b+9﹣b2﹣6b=9,故选C【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.5.(2016春•苏州期末)不论x,y为何有理数,x2+y2﹣10x+8y+45的值均为()A.正数B.零C.负数D.非负数【分析】根据完全平方公式对代数式整理,然后再根据平方数非负数的性质进行判断.【解答】解:x2+y2﹣10x+8y+45,=x2﹣10x+25+y2+8y+16+4,=(x﹣5)2+(y+4)2+4,∵(x﹣5)2≥0,(y+4)2≥0,∴(x﹣5)2+(y+4)2+4>0,故选:A.【点评】此题主要考查完全平方式和平方数非负数的性质,比较简单.6.(2016春•嵊州市期末)已知x﹣=2,则代数式5x2+﹣3的值为()A.27B.7C.17D.2【分析】原式前两项提取5,利用完全平方公式变形,将已知等式代入计算即可求出值.【解答】解:∵x﹣=2,∴原式=5(x2+)﹣3=5[(x﹣)2+2]﹣3=30﹣3=27,故选A【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(2016•贵阳)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【分析】由平角的定义求出∠MBC的度数,再由平行线的性质得出∠2=∠MBC=52°即可.【解答】解:如图所示:∵AB⊥BC,∠1=38°,∴∠MBC=180°﹣90°﹣38°=52°,∵a∥b,∴∠2=∠MBC=52°;故选:B.第8页(共20页)【点评】本题考查了平行线的性质、平角的定义;熟练掌握平行线的性质是解决问题的关键.8.(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cmB.7cm,4cm,2cmC.3cm,4cm,8cmD.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.9.(2016•济南校级一模)如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是()A.∠B=∠E,BC=EFB.BC=EF,AC=DFC.∠A=∠D,∠B=∠ED.∠A=∠D,BC=EF【分析】分别对各选项中给出条件证明△ABC≌△DEF,进行一一验证即可解题.【解答】解:(1)在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故A正确;(2)在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);故B正确;(3)在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故C正确;(4)无法证明△ABC≌△DEF,故D错误;故选D.第9页(共20页)【点评】本题考查了全等三角形的判定,常用判定三角形全等方法有SSS,SAS,ASA,AAS,本题中对各选项进行验证是解题的关键.10.(2016•泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.二.填空题(共10小题)11.(2016•曲靖模拟)若(m﹣2)2=3,则m2﹣4m+6的值为5.【分析】原式配方变形后,将已知等式代入计算即可求出值.【解答】解:∵(m﹣2)2=3,∴原式=m2﹣4m+4+2=(m﹣2)2+2=3+2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.12.(2016春•扬州期末)如果二次三项式x2﹣2(m+1)x+16是