考点56排列与组合教师版备战2020年高考理科数学必刷题集

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1考点56排列与组合1.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中小李和小王不在一起,不同的安排方案共有()A.168种B.156种C.172种D.180种【答案】B【解析】分类:(1)小李和小王分别去甲、乙2个展区,共有=12种情况,(2)小王,小李一人去甲或乙,共=96种情况,(3)小王,小李均没有去甲或乙,共=48种情况,总共N=12+96+48=156种情况,故选B.2.若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有数位上的数字和为偶数,则这样的三位数的个数是()A.540B.480C.360D.200【答案】D【解析】由个位数字与十位数字之和为奇数知个位数字、十位数字1奇1偶,有C15C15A22=50(种)排法;所有数位上的数字和为偶数,则百位数字是奇数,有C14=4(种)满足题意的选法,故满足题意的三位数共有50×4=200(个).3.将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有()A.240B.480C.720D.960【答案】B【解析】(1,2)或(6,7)为空时,第三个空位有4种选择;(2,3)或(3,4)或(4,5)或(5,6)为空时,第三个空位有3种选择;因此空位共有2×4+4×3=20种情况相邻,所以不同坐法有20=480种,故选B.4.身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则甲丁不相邻的不同的排法共有()A.12B.14C.16D.18【答案】B【解析】从矮到高的甲、乙、丙、丁、戊5人的身高可记为1,2,3,4,5.要求1,4不相邻.分四类:①先排4,5时,则1只有1种排法,2,3在剩余的两个位上,这样有A22A22=4(种)排法;②先排3,5时,则4只有1种排法,2,1在剩余的两个位上,这样有A22A22=4种排法;③先排1,2时,则4只有1种排法,3,5在剩余的两个位上,这样有A22A22=4(种)排法;④先排1,3时,则这样的数只有两个,即21534,43512,只有两种排法.综上共有4+4+4+2=14(种)排法,故选B.25.某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的种数为()A.15B.30C.35D.42【答案】B【解析】由间接法得可能情况数为-·=35-5=30.6.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种【答案】C【解析】不同的分配方案可分为以下两种情况:①甲、乙两人在一个路口,其余三人分配在另外的两个路口,其不同的分配方案有C23A33=18(种);②甲、乙所在路口分配三人,另外两个路口各分配一个人,其不同的分配方案有C13A33=18(种).由分类加法计数原理可知不同的分配方案共有18+18=36(种).7.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案共有()A.30种B.90种C.180种D.270种【答案】B【解析】由每班至少1名,最多2名,知分配名额为1,2,2,所以分配方案有··=90(种).8.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是()A.258B.306C.336D.296【答案】C【解析】若7级台阶上每一级至多站1人,有种不同的站法;若1级台阶站2人,另一级站1人,共有种不同的站法.所以共有不同的站法种数是+=336.故选C.9.某中学高一学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现从中任选3人,要求这三人不能全是同一个班的学生,且在三班至多选1人,则不同选法的种数为()A.484B.472C.252D.232【答案】B【解析】若三班有1人入选,则另两人从三班以外的12人中选取,共有C14C212=264(种)选法.若三班没有人入选,则要从三班以外的12人中选3人,又这3人不能全来自同一个班,故有C312-3C34=208(种)选法.故总共有264+208=472(种)不同的选法.310.把7个字符a,a,a,b,b,α,β排成一排,要求三个“a”两两不相邻,且两个“b”也不相邻,则这样的排法共有()A.144种B.96种C.30种D.12种【答案】B【解析】先排列b,b,α,β,若α,β不相邻,有种排法,若α,β相邻,有种,共有6+6=12种排法,从所形成的5个空档中选3个插入a,a,a,共有12×=120种排法,若b,b相邻时,从所形成的4个空档中选3个插入a,a,a,共有6×=24种排法,所以三个“a”两两不相邻,且两个“b”也不相邻,这样的排法共有120-24=96种,故选B.11.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种【答案】C【解析】第一步:先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步:从5个球里选出两个球放在刚才的盒子里,有种选法;第三步:把剩下的3个球全排列,有种排法,由分步乘法计数原理得不同方法共有4=240种,故选C.12.某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,分别乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种【答案】B【解析】若A户家庭的孪生姐妹乘坐甲车,即剩下的两个小孩来自其他的2个家庭,有·22=12种不同的方法,若A户家庭的孪生姐妹乘坐乙车,那来自同一家庭的2名小孩来自剩下的3个家庭中的一个,有·22=12种不同的方法.所以共有12+12=24种方法.故选B.13.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种【答案】B【解析】先放标号1,2的卡片,有种放法,再将标号3,4,5,6的卡片平均分成两组再放置,有·种放法,故共有·=18种不同的放法.414.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种【答案】B【解析】由题意知,不同的座次有=48(种),故选B.15.将除颜色外完全相同的一个白球、一个黄球、两个红球分给三名小朋友,且每名小朋友至少分得一个球的分法种数为()A.15B.21C.18D.24【答案】B【解析】分四类,第一类:两个红球分给其中一个人,有种分法;第二类:白球和黄球分给一个人,有种分法;第三类:白球和一个红球分给一个人,有种分法;第四类:黄球和一个红球分给一个人,有种方法,总共有++2=21种分法,故选B.16.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有种不同的涂色方法.【答案】732【解析】如图,记六个区域的涂色数为a6,若A,F涂色相同,则相当于5个区域涂色,记5个区域涂色数为a5,同理只有4个区域时涂色数记为a4,易知a4=++=84,a6=4×35-a5=4×35-=4×35-4×34+84=732.17.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为.(用数字作答)【答案】5040【解析】分两类,一类是甲、乙都参加,另一类是从甲、乙中选一人,方法数为N=+=1440+3600=5040.填5040.18.从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有1名的选派方法种数为.(用数字作答)【答案】44【解析】由题意可知分四类,第一类,2名语文老师,2名数学老师,1名英语老师,有=4种选派方法;第二类,1名语文老师,2名数学老师,2名英语老师,有=12种选派方法;第三类,2名语文老师,1名数学老师,2名英语老师,有=12种选派方法;第四类,1名语文老师,1名数学老师,3名英语老师,有=16种选派方法;5则一共有4+12+12+16=44种选派方法.19.设x1,x2,x3,x4∈{-1,0,2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数组(x1,x2,x3,x4)的组数为.【答案】45【解析】分类讨论:①|x1|+|x2|+|x3|+|x4|=2,则这四个数为2,0,0,0或-1,-1,0,0,有+=4+6=10(组);②|x1|+|x2|+|x3|+|x4|=3,则这四个数为2,-1,0,0或-1,-1,-1,0,有+=12+4=16(组);③|x1|+|x2|+|x3|+|x4|=4,则这四个数为2,2,0,0或-1,-1,2,0或-1,-1,-1,-1,有++=6+6×2+1=19(组);综上可得,所有有序数组(x1,x2,x3,x4)的组数为10+16+19=45.20.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)【答案】1080【解析】分两种情况:第一种:四位数都不是偶数的个数为:A45=120(个),第二种:四位数中有一位为偶数的个数为C14C14A35=960(个),则共有1080个.21.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有________个.【答案】27【解析】由题意知以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,(1)先考虑等边三角形情况则a=b=c=1,2,3,4,5,6,此时有6个.(2)再考虑等腰三角形情况,若a,b是腰,则a=b,当a=b=1时,c<a+b=2,则c=1,与等边三角形情况重复;当a=b=2时,c<4,则c=1,3(c=2的情况等边三角形已经讨论了),此时有2个;当a=b=3时,c<6,则c=1,2,4,5,此时有4个;当a=b=4时,c<8,则c=1,2,3,5,6,此时有5个;当a=b=5时,c<10,有c=1,2,3,4,6,此时有5个;当a=b=6时,c<12,有c=1,2,3,4,5,此时有5个;由分类加法计数原理知有2+4+5+5+5+6=27(个).6

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功