1考点60离散型随机变量及其分布列1.(2018江西九校联考)已知下列四个变量:①某高铁候车室中一天的旅客数量X1;②某次学术讲座中学员向主讲教授提问的次数X2;③某一天中长江的水位X3;④某次大型车展中销售汽车的车辆数X4.其中不是离散型随机变量的是()A.①中的X1B.②中的X2C.③中的X3D.④中的X42.(2018湖南湘阳联考)某射手射击所得环数X的分布列为X45678910P0.020.040.060.090.280.290.22则此射手“射击一次命中环数大于7”的概率为()A.0.28B.0.88C.0.79D.0.513.(2018福建南平一模)随机变量ξ的所有可能的取值为1,2,3,…,10,且P(ξ=k)=ak(k=1,2,…,10),则a值为()A.1110B.155C.110D.554.(2018兰州模拟)有一个公用电话亭,观察使用过电话的人的流量时,设在某一时刻,有n个人正在使用电话或等待使用电话的概率为P(n),且P(n)与时刻t无关,统计得到P(n)=12n·Pn,n,那么P(0)的值是()A.0B.1C.3263D.125.(2018四川资阳联考)在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是()A.P(X=2)B.P(X≤2)C.P(X=4)D.P(X≤4)6.(2018衡水中学模拟)若随机变量X的分布列为X-2-101232P0.10.20.20.30.10.1则当P(X<a)=0.8时,实数a的取值范围是()A.(-∞,2]B.[1,2]C.(1,2]D.(1,2)7.(2018湖北八校联考)已知随机变量ξ的分布列如下表:ξ-101Pabc其中a,b,c成等差数列,则P(|ξ|=1)的值与公差d的取值范围分别是()A.23-13,13B.2313,23C.23-13,23D.13-13,138.(2018浙江温州模拟)设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=________.9.(2018甘肃联合诊断)抛掷2颗骰子,所得点数之和X是一个随机变量,则P(X≤4)=________.10.(2018广东珠海三模)在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为________.11.(2018石家庄调研)为检测某产品的质量,现抽取5件产品,测量产品中微量元素x,y的含量(单位:毫克),测量数据如下:编号12345x169178166177180y7580777081如果产品中的微量元素x,y满足x≥177且y≥79时,该产品为优等品.现从上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列.12.(甘肃省兰州市第一中学2019届高三6月最后高考冲刺模拟数学理)某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:反馈点数t12345销量(百件)/天0.50.611.41.7(Ⅰ)经分析发现,可用线性回归模型0.08ybt拟合当地该商品销量y(千件)与返还点数t之间的相关关系.试预测若返回6个点时该商品每天的销量;(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:3返还点数预期值区间(百分比)[1,3)[3,5)[5,7)[7,9)[9,11)[11,13)频数206060302010(1)求这200位拟购买该商品的消费者对返点点数的心理预期值x的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);(2)将对返点点数的心理预期值在[1,3)和[11,13]的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望紧缩型”消费者的人数为随机变量X,求X的分布列及数学期望.13.(北京市通州区2019届高三4月第一次模拟考试数学理)某校工会开展健步走活动,要求教职工上传3月1日至3月7日微信记步数信息,下图是职工甲和职工乙微信记步数情况:(Ⅰ)从3月1日至3月7日中任选一天,求这一天职工甲和职工乙微信记步数都不低于10000的概率;(Ⅱ)从3月1日至3月7日中任选两天,记职工乙在这两天中微信记步数不低于10000的天数为X,求X的分布列及数学期望;(Ⅲ)如图是校工会根据3月1日至3月7日某一天的数据,制作的全校200名教职工微信记步数的频率分布直方图.已知这一天甲和乙微信记步数在单位200名教职工中排名分别为第68和第142,请指出这是根据哪一天的数据制作的频率分布直方图(不用说明理由).14.(安徽省江淮十校2019届高三年级5月考前最后一卷数学理)某销售公司在当地A、B两家超市各有4一个销售点,每日从同一家食品厂一次性购进一种食品,每件200元,统一零售价每件300元,两家超市之间调配食品不计费用,若进货不足食品厂以每件250元补货,若销售有剩余食品厂以每件150回收.现需决策每日购进食品数量,为此搜集并整理了A、B两家超市往年同期各50天的该食品销售记录,得到如下数据:销售件数891011频数20402020以这些数据的频数代替两家超市的食品销售件数的概率,记X表示这两家超市每日共销售食品件数,n表示销售公司每日共需购进食品的件数.(1)求X的分布列;(2)以销售食品利润的期望为决策依据,在19n与n20之中选其一,应选哪个?15.(重庆南开中学2019届高三第四次教学检测考试数学理)“伟大的变革—庆祝改革开放40周年大型展览”于2019年3月20日在中国国家博物馆闭幕,本次特展紧扣“改革开放40年光辉历程”的主线,多角度、全景式描绘了我国改革开放40年波澜壮阔的历史画卷.据统计,展览全程呈现出持续火爆的状态,现场观众累计达423万人次,参展人数屡次创造国家博物馆参观纪录上展馆点击浏览总量达4.03亿次.下表是2019年2月参观人数(单位:万人)统计表日期1234567891011121314人数3.03.12.52.35.46.86.26.75.54.93.23.02.72.5日期1516171819202122232425262728人数2.42.93.23.02.82.92.33.02.93.13.03.13.13.0根据表中数据回答下列问题:5(1)请将2019年2月前半月(114日)和后半月(1528日)参观人数统计对比茎叶图填补完整,并通过茎叶图比较两组数据方差的大小(不要求计算出具体值,得出结论即可);(2)将2019年2月参观人数数据用该天的对应日期作为样本编号,现从中抽样7天的样本数据.若抽取的样本编号是以4为公差的等差数列,且数列的第4项为15,求抽出的这7个样本数据的平均值;(3)根据国博以往展览数据及调查统计信息可知,单日入馆参观人数为0~3(含3,单位:万人)时,参观者的体验满意度最佳,在从2中抽出的样本数据中随机抽取三天的数据,参观者的体验满意度为最佳的天数记为,求的分布列与期望.16.(山东省泰安市教科研中心2019届高三考前密卷数学理)某中学高一期中考试结束后,从高一年级1000名学生中任意抽取50名学生,将这50名学生的某一科的考试成绩(满分150分)作为样本进行统计,并作出样本成绩的频率分布直方图(如图).(1)由于工作疏忽,将成绩[130,140)的数据丢失,求此区间的人数及频率分布直方图的中位数;(结果保留两位小数)(2)若规定考试分数不小于120分为优秀,现从样本的优秀学生中任意选出3名学生,参加学习经验交流会.设X表示参加学习经验交流会的学生分数不小于130分的学生人数,求X的分布列及期望;(3)视样本频率为概率.由于特殊原因,有一个学生不能到学校参加考试,根据以往考试成绩,一般这名学生的成绩应在平均分左右.试根据以上数据,说明他若参加考试,可能得多少分?(每组数据以区问的中点值为代表)17.(江西省新八校2019届高三第二次联考理)某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:等级标准果优质果精品果礼品果个数10304020(1)若将频率视为概率,从这100个水果中有放回地随机抽取4个,求恰好有2个水果是礼品果的概率.(结果用分数表示)6(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.方案1:不分类卖出,单价为20元/kg.方案2:分类卖出,分类后的水果售价如下:等级标准果优质果精品果礼品果售价(元/kg)16182224从采购商的角度考虑,应该采用哪种方案?(3)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取3个,X表示抽取的是精品果的数量,求X的分布列及数学期望EX.18.(辽宁省沈阳市2019届高三教学质量监测三数学理)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、l个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(1)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?19.(四川省绵阳市2019届高三下学期第三次诊断性考试数学理)甲、乙两家物流公司都需要进行货物中转,由于业务量扩大,现向社会招聘货车司机,其日工资方案如下:甲公司,底薪80元,司机毎中转一车货物另计4元:乙公司无底薪,中转40车货物以内(含40车)的部分司机每车计6元,超出40车的部分司机每车计7元.假设同一物流公司的司机一填中转车数相同,现从这两家公司各随机选取一名货车司机,并分别记录其50天的中转车数,得到如下频数表:甲公司送餐员送餐单数频数表送餐单数38394041427天数101510105乙公司送餐员送餐单数频数表送餐单数3839404142天数51010205(1)现从记录甲公司的50天货物中转车数中随机抽取3天的中转车数,求这3天中转车数都不小于40的概率;(2)若将频率视为概率,回答下列两个问题:①记乙公司货车司机日工资为X(单位:元),求X的分布列和数学期望E(X);②小王打算到甲、乙两家物流公司中的一家应聘,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.20.(河南省濮阳市2019届高三5月模拟考试数学理)随着手机的发展,“微信”逐渐成为人们支付购物的一种形式.某机构对“使用微信支付”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信支付”赞成人数如下表.年龄(单位:岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数51012721(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面22列联表,并判断是否有99%的把握认为“使用微信支付”的态度与人的年龄有关;年龄不低于45岁的人数年龄低于45岁的人数合计赞成不赞成合计8(Ⅱ)若从年龄在[45,65)的被调查人中按照赞成与不赞成分层抽样,抽取5人进行追踪调查,在5人中抽取3人做专访,求3人中不赞成使用微信支付的人数的分布列和期望值.参考数据:20()PKk…0.150.100.050.0250.0100.0050.0010k2.0722.7