弹性力学简答题1.弹性力学的概念,任务答:弹性力学是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、应变和位移。弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。2.五个基本假定在建立弹性力学基本方程时有什么用途?答:(1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。(2)完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。(3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。(4)各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步地说,就是物体的弹性常数也不随方向而变化。(5)小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。3.什么是理想弹性体?答:凡是符合连续性、完全弹性、均匀性和各向同性这四个假定的物体就称为理想弹性体。4.弹性力学依据的三大规律。答:变形连续规律、应力-应变关系和运动(或平衡)规律。5.简述圣维南原理。圣维南原理表明了什么。答:圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同),那么,近处的应力分量将有显著的改变,但远处所受的影响可以不计。圣维南原理表明:在小边界上进行面力的静力等效变换后,只影响近处(局部区域)的应力,对绝大部分弹性体区域的应力没有明显影响。6.弹性力学的问题解法有几种,并简述。答:弹性力学问题解法有两种。一是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,并由此解出位移分量,然后再求出形变分量和应力分量,这种解法称为位移法;二是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和相应的边界条件,并由此解出应力分量,然后再求出形变分量和位移分量,这种解法称为应力法。7.何谓逆解法和半逆解法?答:所谓逆解法,就是先按某种方法给出一组满足全部基本方程的应力分量或位移分量,然后考察,在确定的坐标系下,对于形状和几何尺寸完全确定的物体,当其表面受什么样的面力作用或具有什么样的位移时,才能得到这组解答。所谓的半逆解法,就是针对所要求解的问题,根据弹性体的几何形状、受力特点或材料力学已知的初等结果,假设一部分应力分量或位移分量为已知,然后由基本方程求出其他量,把这些量合在一起来凑合已知的边界条件;或者把全部的应力分量或位移分量作为已知,然后校核这些假设的量是否满足弹性力学的基本方程和边界条件。8.什么是平面应力问题及平面应变问题?答:平面应力问题:设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束,同时,体力也平行于板面并且不沿厚度变化的这类问题。平面应变问题:设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面而且不沿长度变化的面力或约束,同时,体力也平行于横截面而且不沿长度变化(内在因素和外在因素都不沿长度变化)的这类问题9.什么是应力集中?答:由于截面急剧变化引起的应力局部增大现象,称为应力集中。10.单连体和多连体答:单连体:对于在物体内所做的任何一根闭合曲线,都可以使它在物体内不断收缩而趋于一点。多连体:不具有上述几何性质的物体,如圆环或者圆筒。平面问题可以这样说:单连体就是只具有单个连续边界的物体,多连体则是具有多个连续边界的物体,也就是有孔口的物体。11.简述位移分量和应变分量的关系。答;当物体的位移分量完全确定时,应变分量即完全确定,反之,应变分量确定,却不能确定位移分量。物体应变为零时可以有任意刚体位移。当物体发生一定的应变时,其位移是由两部分组成,一部分是与应变有关的位移,另一部分是与应变无关的刚体位移。应变分量确定,却不能确定位移分量。