吴松-2009-Unknown-利用-vasp-计算不同晶系晶体弹性常数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

利用VASP计算不同晶系晶体弹性常数吴松0372116@fudan.edu.cn2009年7月27日摘要本文结合不同晶系不同的弹性模量矩阵元,给出计算不同晶系晶体应变的施加方法和Cij的关系。一、弹性常数的基本概念可以参考各种固体物理书,以及参考文献2。二、不同晶系晶体的弹性应变能与应变关系应变存在六个独立分量,可以表示为123456(,,,,,)eeeeeee(1)施加应变后体系前后总能的变化可以表示为66112ijijijVECee(2)由于不同晶系独立的弹性常数互不相同,通过对照不同晶系的弹性模量矩阵元,可以得到不同的应变施加方法。1、立方晶系立方晶系的矩阵元[1]为,其中C的下标对应于i和j,在施加应变时,对应于ei(i=1~6),在计算弹性模量中,将需要施加应变的分量设为相同的。111212121112121211444444000000000000000000000000CCCCCCCCCCCC带入(2)式,可以得到下式:111111221133121212131221122312311232444444554466(2)VECeeCeeCeeCeeCeeCeeCeeCeeCeeCeeCeeCee(3)首先考虑较简单的C44,i和j都等于4,又由上述矩阵元,C44=C55=C66,带入(2)式,设定(1)式为(0,0,0,,,)e,可得:444444554466(2V)ECeeCeeCee(4)因此,24432ECV。同理,设定(,,0,0,0,0)e,可得:1111112212121221(2V)ECeeCeeCeeCee(5)因此,21112()ECCV。在此基础上,施加(,,,0,0,0)e,可得:111111221133121212131221122312311232(2)VECeeCeeCeeCeeCeeCeeCeeCeeCee(7)因此,211123(2)2ECCV。上述三个方程,经过拟合,可以得到三个独立的弹性常数C11、C12和C44。2、六角晶系六角晶系的矩阵元[1]为111213121113131333444411120000000000000000000000002CCCCCCCCCCCCC,体系共有5个独立分量:C11、C12、C13、C33和C44。类似于上述对于立方晶系的分析,由参考文献2,可以给出下表:应变总能变化(,,0,0,0,0)e21112()ECCV(0,0,0,0,0,)e211121()4ECCV(0,0,,0,0,0)e23312ECV(0,0,0,,,0)e244ECV(,,,0,0,0)e233111213(22CECCCV)3、三角晶系(1)、32,3m,32/m该种对称性的晶体的矩阵元[1]为:111213141211131413133314144444141112140000000000000000002CCCCCCCCCCCCCCCCCCC,相对于六角晶系多出一个独立分量C14,共六个独立分量。应变与能量关系表为:应变总能变化(,,0,0,0,0)e21112()ECCV(0,0,0,0,0,)e211121()4ECCV(0,0,,0,0,0)e23312ECV(0,0,0,,,0)e244ECV(,,,0,0,0)e233111213(22CECCCV)(0,0,0,0,,)e214ECV(2)、3,3该种对称性的晶体的矩阵元[1]为:111213141512111314151313331414444515154414111245140000000000002CCCCCCCCCCCCCCCCCCCCCCCCC,相对于上述第一种晶系多出两个独立分量C15和C45,共八个独立分量。应变与能量关系表为:应变总能变化(,,0,0,0,0)e21112()ECCV(0,0,0,0,0,)e211121()4ECCV(0,0,,0,0,0)e23312ECV(0,0,0,,,0)e244ECV(,,,0,0,0)e233111213(22CECCCV)(0,0,0,0,,)e214ECV(0,,0,0,0,)e215ECV(0,0,0,,0,)e245ECV4、四方晶系(1)、422,4mm,42m,4/mmm该种对称性的晶体的矩阵元[1]为:,共六个独立分量,应变与能量关系表为:111213121113131333444466000000000000000000000000CCCCCCCCCCCC应变总能变化(,,0,0,0,0)e21112()ECCV(0,0,0,0,0,)e26612ECV(0,0,,0,0,0)e23312ECV(0,0,0,,,0)e244ECV(,,,0,0,0)e233111213(22CECCCV)(0,,,0,0,0)e2331113()22CCECV(2)、4,4,4/m该种对称性的晶体的矩阵元[1]为:,共七个独立分量,应变与能量关系表为:1112131612111316131333444416166600000000000000000000CCCCCCCCCCCCCCCC应变总能变化(,,0,0,0,0)e21112()ECCV(0,0,0,0,0,)e26612ECV(0,0,,0,0,0)e23312ECV(0,0,0,,,0)e244ECV(,,,0,0,0)e233111213(22CECCCV)(0,,,0,0,0)e2331113()22CCECV(,0,0,0,0,)e216ECV5、正交晶系该种对称性的晶体的矩阵元[1]为:,共九个独立分量,应变与能量关系表为:111213122223132333445566000000000000000000000000CCCCCCCCCCCC应变总能变化(,0,0,0,0,0)e21112ECV(0,,0,0,0,0)e22212ECV(0,0,,0,0,0)e23312ECV(0,0,0,,0,0)e24412ECV(0,0,0,0,,0)e25512ECV(0,0,0,0,0,)e26612ECV(,,0,0,0,0)e2112212()22CCECV(0,,,0,0,0)e2332223()22CCECV(,0,,0,0,0)e2331113()22CCECV6、单斜晶系该种对称性的晶体的矩阵元[1]为:,共十三个独立分量,应变与能量关系表为:11121316122223261323333644454555162636660000000000000000CCCCCCCCCCCCCCCCCCCC应变总能变化(,0,0,0,0,0)e21112ECV(0,,0,0,0,0)e22212ECV(0,0,,0,0,0)e23312ECV(0,0,0,,0,0)e24412ECV(0,0,0,0,,0)e25512ECV(0,0,0,0,0,)e26612ECV(,,0,0,0,0)e2112212()22CCECV(0,,,0,0,0)e2332223()22CCECV(,0,,0,0,0)e2331113()22CCECV(0,0,0,,,0)e2554445()22CCECV(,0,0,0,0,)e2661116()22CCECV(0,,0,0,0,)e2662226()22CCECV(0,0,,0,0,)e2336636()22CCECV7、三斜晶系该种对称性的晶体的矩阵元[1]为:,共二十一个独立分量,应变与能量关系表为:111213141516122223242526132333343536142434444546152535455556162636465666CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC应变总能变化(,0,0,0,0,0)e21112ECV(0,,0,0,0,0)e22212ECV(0,0,,0,0,0)e23312ECV(0,0,0,,0,0)e24412ECV(0,0,0,0,,0)e25512ECV(0,0,0,0,0,)e26612ECV(,,0,0,0,0)e2112212()22CCECV(0,,,0,0,0)e2332223()22CCECV(,0,,0,0,0)e2331113()22CCECV(0,0,0,,,0)e2554445()22CCECV(,0,0,0,0,)e2661116()22CCECV(0,,0,0,0,)e2662226()22CCECV(,0,0,,0,0)e2114414()22CCECV(,0,0,0,,0)e2551115()22CCECV(0,,0,,0,0)e2224424()22CCECV(0,,0,0,,0)e2552225()22CCECV(0,0,,,0,0)e2334434()22CCECV(0,0,,0,,0)e2335535()22CCECV(0,0,0,,0,)e2664446()22CCECV(0,0,0,0,,)e2556656()22CCECV(,0,0,0,0,)e2661116()22CCECV8、各向同性介质该种对称性的晶体共二个独立分量,它的弹性模量矩阵元[1]可以表示为以下矩阵:111212121112121211111211121112000000000000002000002000002CCCCCCCCCCCCCCC,应变与能量关系表为:应变总能变化(,0,0,0,0,0)e21112ECV(0,0,0,,0,0)e211121()4ECCV对于以上各种晶系,n个独立的分量对应于n个方程,通过拟合得到由n个方程组成的方程组,可解出各分量的弹性常数。三、计算步骤参见参考文献2。参考文献:1、方俊鑫,陆栋,《固体物理学》(上册),上海科学技术出版社,1980。2、侯柱锋,《采用VASP如何计算晶体的弹性常数Cij》。

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功