18.2.2.2菱形的判定

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十八章平行四边形导入新课讲授新课当堂练习课堂小结18.2.2菱形第2课时菱形的判定学习目标1.经历菱形判定定理的探究过程,掌握菱形的判定定理.(重点)2.会用这些菱形的判定方法进行有关的证明和计算.(难点)一组邻边相等有一组邻边相等的平行四边形叫做菱形.平行四边形菱形的性质菱形两组对边平行四条边相等两组对角分别相等邻角互补两条对角线互相垂直平分每一条对角线平分一组对角边角对角线复习引入问题菱形的定义是什么?性质有哪些?根据菱形的定义,可得菱形的第一个判定的方法:∵在□ABCD中,AB=AD∴四边形ABCD是菱形.数学语言有一组邻边相等的平行四边形叫做菱形.ABCD思考还有其他的判定方法吗?对角线互相垂直的平行四边形是菱形一证明:∵四边形ABCD是平行四边形.∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形的定义).ABCOD已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC⊥BD.求证:□ABCD是菱形.对角线互相垂直的平行四边形是菱形.AC⊥BD几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.ABCD菱形ABCDABCD□ABCD菱形的判定定理:归纳总结如图,□ABCD的两条对角线AC、BD相交于点O,AB=5,AO=4,BO=3.求证:四边形ABCD是菱形.ABCDO又∵四边形ABCD是平行四边形,∵OA=4,OB=3,AB=5,证明:即AC⊥BD,∴AB2=OA2+OB2,∴△AOB是直角三角形,练习∴四边形ABCD是菱形.变式如图,在□ABCD中,对角线AC平分一组对角.求证:四边形ABCD是菱形.ABCD证一证证明:∵四边形ABCD是平行四边形.∴∠DAB=∠DCB.∵AC平分一组对角,∴∠DAC=∠DCA∴DA=DC.∴□ABCD是菱形(菱形的定义).对角线平分一组对角的平行四边形是菱形.归纳变式如图,在□ABCD中,对角线AC平分∠DAB.求证:四边形ABCD是菱形.ABCD证一证证明:∵四边形ABCD是平行四边形.∴∠DAB=∠DCB,AB∥CD,AD∥BC.∴∠DAC=∠BCA,∠BAC=∠DCA∵AC平分∠DAB,∴∠DAC=∠BAC∴∠DAC=∠DCA∴DA=DC.∴□ABCD是菱形(菱形的定义).对角线平分一个内角的平行四边形是菱形.归纳例1如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.ABCDEFO12证明:∵四边形ABCD是矩形,∴AE∥FC,∴∠1=∠2.∵EF垂直平分AC,∴AO=OC.又∠AOE=∠COF,∴△AOE≌△COF,∴EO=FO.∴四边形AFCE是平行四边形.又∵EF⊥AC∴四边形AFCE是菱形.典例精析针对训练一在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CDB四条边相等的四边形是菱形二证明:∵AB=BC=CD=AD;∴AB=CD,BC=AD.∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形.ABCD已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.四条边都相等的四边形是菱形AB=BC=CD=AD几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形ABCD是菱形.ABCD菱形ABCD菱形的判定定理:归纳总结四边形ABCDABCD证明:∵∠1=∠2,又∵AE=AC,AD=AD,∴△ACD≌△AED(SAS).同理△ACF≌△AEF(SAS).∴CD=ED,CF=EF.又∵EF=ED,∴CD=ED=CF=EF,∴四边形ABCD是菱形.2例2如图,在△ABC中,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.ACBEDF1典例精析例3如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.22226810cm.ACABBC四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.归纳HGFEDCBA证明:连接AC、BD.∵四边形ABCD是矩形,∴AC=BD.∵点E、F、G、H为各边中点,11,22EFGHBDFGEHAC,∴EF=FG=GH=HE,∴四边形EFGH是菱形.例4如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.CABDEFGH1.如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?解:四边形EFGH是菱形.又∵AC=BD,∵点E、F、G、H为各边中点,11.22EFGHBDFGEHAC,∴EF=FG=GH=HE,∴四边形EFGH是菱形.理由如下:连接AC、BD针对训练二ABCDEFGH拓展1如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?解:连接AC、BD.∵点E、F、G、H为各边中点,11,22EFGHBDFGEHAC,∴四边形EFGH是平行四边形.拓展2如图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?四边形EFGH是矩形.同学们自己去解答吧2.在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?ACDB分析:易知四边形ABCD是平行四边形,只需证一组邻边相等或对角线互相垂直即可.由题意可知BC边上的高和CD边上的高相等,然后通过证△ABE≌△ADF,即得AB=AD.请补充完整的证明过程EF例5如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;菱形的性质与判定的综合运用三(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为,∴菱形的面积为.2342383(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.归纳针对训练三1.如图,已知,四边形ABCD是菱形,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,求证:四边形AEPF是菱形FECABDP针对训练三变式如图,已知,四边形ABCD是菱形,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥AB交BC于F,当点P处于什么位置时,四边形BEPF是菱形FEDBCAP2.如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.解:∵四边形ABCD为平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠ACB,∠BAC=∠ACD,∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠DAC=∠ACD,∴AD=DC,∴四边形ABCD为菱形,∴四边形ABCD的周长=4×2=8.针对训练三(1)证明:由尺规作∠BAF的平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;3.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.针对训练三(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,由勾股定理得AO=4,∴AE=2AO=8.12学以致用1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.√╳╳╳2.一边长为5cm平行四边形的两条对角线的长分别为24cm和26cm,那么平行四边形的面积是.120cm23.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°B解析:∵将△ABC沿BC方向平移得到△DCE,∴AC∥DE,AC=DE,∴四边形ABED为平行四边形.当AC=BC时,平行四边形ACED是菱形.故选B.ABCDOE4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.证明:∵MN是AC的垂直平分线,∴AE=CE,AD=CD,OA=OC,∠AOD=∠EOC=90°.∵CE∥AB,∴∠DAO=∠ECO,∴△ADO≌△CEO(ASA).∴AD=CE,OD=OE,∵OD=OE,OA=OC,∴四边形ADCE是平行四边形又∵∠AOD=90°,∴四边形ADCE是菱形.5.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.BCADOEM6.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)当△ABC满足条件时,四边形BFCE是菱形.课堂小结有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四边相等的四边形是菱形.运用定理进行计算和证明菱形的判定定义法判定定理

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功