23.(2012广东深圳9分)如图,在平面直角坐标系中,直线:y=-2x+b(b≥0)的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2.当b=时,直线:y=-2x+b(b≥0)经过圆心M:当b=时,直线:y=-2x+b(b≥0)与OM相切:(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式,23.如图7-1,直线AB过点A(,0),B(0,),且(其中0,0)。(1)为何值时,△OAB面积最大?最大值是多少?(2)如图7-2,在(1)的条件下,函数的图像与直线AB相交于C、D两点,若,求的值。(3)在(2)的条件下,将△OCD以每秒1个单位的速度沿轴的正方向平移,如图7-3,设它与△OAB的重叠部分面积为S,请求出S与运动时间(秒)的函数关系式(010)。23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.23、如图1,关于x的二次函数cbxxy2经过点)0,3(A,点)3,0(C,点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等,若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S⊿FBC=3S⊿EBC,若存在求出点F的坐标,若不存在请说明理由。23.(9分)如图,抛物线与轴交于A、B两点,且B(1,0)。(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线上的动点,当直线平分∠APB时,求点P的坐标;(3)如图2,已知直线分别与轴轴交于C、F两点。点Q是直线CF下方的抛物线上的一个动点,过点Q作轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE。问以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由。322xaxyxxyxy9432xyxyy