深圳中考数学试题分类-解答题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第1页深圳中考数学集训——解答题训练一、整式运算:1、计算:01π32sin45200732、计算:(13)0+(31)-1-2)5(-|-1|3、计算:21028sin452(3.14)解:原式=4、计算:03)2008(830tan335、计算:2202(3)(3.14)8sin45.6、计算:(13)-2-2sin45º+(π-3.14)0+128+(-1)3.第2页二、化简求值、不等式组、方程A组1、先化简再求值:42222222y1x)xy1)(xy1(yxy2xy2xyx,其中x=23,y=232、计算:|1-2|+231+(π-2)03、先化简,再求值:(2xx2xx)÷2xx4,其中x=20054、先化简代数式222aaa÷412a,然后选取一个合适..的a值,代入求值.5、先化简分式a2-9a2+6a+9÷a-3a2+3a-a-a2a2-1,然后在0,1,2,3中选一个你认为合适的a值,代入求值.第3页B组1、解不等式组,并把它的解集表示在数轴上:2(2)3134xxxx≤ ①    ②2、先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x.解:∵29(3)(3)xxx,∴(3)(3)0xx.由有理数的乘法法则“两数相乘,同号得正”,有(1)3030xx(2)3030xx解不等式组(1),得3x,解不等式组(2),得3x,故(3)(3)0xx的解集为3x或3x,即一元二次不等式290x的解集为3x或3x.问题:求分式不等式51023xx的解集.C组1、解方程组:05x3y5yx2(8分)2、解方程:21133xxx解:第4页三、概率统计1、(8分)右图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图。(1)求该班有多少名学生?(2)补上步行分布直方图的空缺部分;(3)在扇形统计图中,求骑车人数所占的圆心角度数。(4)若全年级有500人,估计该年级步行人数。2、(8分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图8-1和图8-2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)(2分)填充图8-1频率分布表中的空格.(2)(2分)在图8-2中,将表示“自然科学”的部分补充完整.(3)(2分)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?解:(4)(2分)根据图表提供的信息,请你提出一条合理化的建议.频率分布表图书种类频数频率自然科学4000.20文学艺术10000.50社会百科5000.25数学20128乘车步行骑车步行50%步行20%骑车30%8006001000图8-2自然科学文学艺术社会百科数学借阅量/册4002000图书图8-1第5页3、2007年某市国际车展期间,某公司对参观本次车展盛会的消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回.①根据调查问卷的结果,将消费者年收入的情况整理后,制成表格如下:年收入(万元)4.867.2910被调查的消费者人数(人)2005002007030②将消费者打算购买小车的情况整理后,作出频数分布直方图的一部分(如图4).注:每组包含最小值不包含最大值,且车价取整数.请你根据以上信息,回答下列问题.(1)根据①中信息可得,被调查消费者的年收入的众数是______万元.(2)请在图4中补全这个频数分布直方图.(3)打算购买价格10万元以下小车的消费者人数占被调查消费者人数的百分比是______.4、某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图6中的条形统计图.(3)写出A品牌粽子在图7中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.图4046810121416车价/万元人数/人40120200360图7C品牌50%品牌4001200销售量(个)0200400600800100012001400图6C品牌B品牌A品牌第6页4、(7分)深圳大学青年志愿者协会对报名参加2011年深圳大运会志愿者选拔活动的学生进行了一次与大运知识有关的测试,小亮对自己班有报名参加测试的同学的测试成绩作了适当的处理,将成绩分成三个等级:一般、良好、优秀,并将统计结果绘成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)小亮班共有名学生参加了这次测试,如果青年志愿者协会决定让成绩为“优秀”的学生参加下一轮的测试,那么小亮班有人将参加下轮测试;(3)若这所高校共有1200名学生报名参加了这次志愿者选拔活动的测试,请以小亮班的测试成绩的统计结果来估算全校共有多少名学生可以参加下一轮的测试。5、(本题7分)低碳发展是今年深圳市政府工作报告提出的发展理念.近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图6中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动调查了________个单位;(3分)(2)在图7中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为________度;(2分)(3)小明把图6中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,以此类推,若每个被检单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________________吨.(2分)01234567单位碳排放值x(千克/平方米.月)单位数图6图75≤x<71≤x<33≤x<5第7页四、三角函数应用1、(8分)大楼AD的高为10米,远处有一塔BC,某人在楼底A处测得踏顶B处的仰角为60º,爬到楼顶D点测得塔顶B点的仰角为30º,求塔BC的高度。2、(6分)如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.3、如图5,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.DACB图5北60°30°ABCMABCD第8页五、应用题A组1、在深圳“净畅宁”行动中,有一块面积为150亩的绿化工程面向全社会公开招标。现有甲、乙两工程队前来竞标,甲队计划比规定时间少4天,乙按规划时间完成。甲队比乙队每天多绿化10亩,问:规定时间是多少天?(8分)2、某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。(1)(5分)求乙工程队单独做需要多少天完成?(2)(4分)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y均为正整数,且x15,y70,求x、y.3、某工人要制造180个相同零件,在制造完40个零件后,他改进技术每天多制造15个零件,恰好共用6天全部完成,问该工人改进技术后每天制造多少个零件?4、AB,两地相距18公里,甲工程队要在AB,两地间铺设一条输送天然气管道,乙工程队要在AB,两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?第9页B组1、(8分)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)(4分)该工艺品每件的进价、标价分别是多少元?(2)(4分)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?2、(本题8分)儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x元之间的函数关系为y=20+4x(x>0)(1)求M型服装的进价;(3分)(2)求促销期间每天销售M型服装所获得的利润W的最大值.(5分)销售,已知每天销售数量与降价补充:函数1、已知x1、x2是关于x的方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115,(1)求k的值;(7分)(2)求x12+x22+8的值.(3分)第10页C组1、“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部..运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?2、(8分)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?第11页六、几何证明A组1、如图6,在平面直角坐标系中,正方形AOCB的边长为1,点D在x轴的正半轴上,且ODOB,BD交OC于点E.(1)求BEC∠的度数.(2)求点E的坐标.(3)求过BOD,,三点的抛物线的解析式.(计算结果要求分母有理化.参考资料:把分母中的根号化去,叫分母有理化.例如:①225255555;②11(21)2121(21)(21);③15353235(53)(53)等运算都是分母有理化)2、如图,已知△ABC,∠ACB=90º,AC=BC,点E、F在AB上,∠ECF=45º,(1)求证:△ACF∽△BEC(8分)(2)设△ABC的面积为S,求证:AF·BE=2S(4分)3、如图3,在梯形ABCD中,ADBC∥,EAAD⊥,M是AE上一点,BAEMCE∠∠,45MBE∠.(1)求证:BEME.(2)若7AB,求MC的长.AEFBCABC图6OEDyx图3ABCDME第12页4、等腰梯形ABCD中,AB//CD,AD=BC,延长AB到E,使BE=CD,连结CE(1)求证:CE=CA;(5分)(2)上述条件下,若AF⊥CE于点F,且AF平分∠DAE,52AECD,求sin∠CAF的值。(5分)5、(7分)如图7,在梯形ABCD中,AD∥BC,ADDCAB,120ADC.(1)(3分)求证:DCBD证明:(2)(4分)若4AB,求梯形

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功