硬件系统可靠性设计规范一,概论可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。二,可靠性设计方法元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满足设计的要求降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力)50%的降额),建议使用二级降额设计方法,一级降额70%冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余;信息冗余;时间冗余等电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等故障自动检测及诊断软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化失效保险技术热设计EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面三,可靠性设计准则1,在确定设备整体方案时,除了考虑技术性、经济性、体积、重量、耗电等外,可靠性是首先要考虑的重要因素。在满足体积、重量及耗电等于数条件下,必须确立以可靠性、技术先进性及经济性为准则的最佳构成整体方案。2,对己投入使用的相同(或相似)的产品,考察其现场可靠性指标,维修性指标及对这两种备标的影响因素,以确定提高当前研制产可靠性的有效措施。3,在满足技术性要求的情况下,尽量简化方案及电路设计和结构设计,减少整机元器件数量及机械结构零件4,尽量实施系列化设计。在原有的成熟产品上逐步扩展,抅成系列,在一个型号上不能采用过多的新技术。采用新技术要考虑继承性。5,尽量实施统一化设计。凡有可能均应用通用零件,保证全部相同的可移动模块、组件和零件都能互换。6,尽量不用不成熟的新技术。如必须使用时应对其可行性及可靠性进行充分论证,并进行各种严格试验。7,尽量减少元器件规格品种,增加元器件的复用率,使元器件品种规格与数量比减少到最小程度。8,在设备设计上,应尽量采用数字电路取代线性电路,因为数字电路具有标准化程度高、稳定性好、漂移小、通用性强及接口参数易匹配等优点。9,为了尽量降低对电源的要求和内部温升,应尽量降低电压和电流。这样可把功率损降低到最低限度,避免高功耗电路,但不应牺牲稳定性或技术性能。10,注意分析电路在暂态过程中引起的瞬时过载,加强暂态保护电路设计,防止元器件的瞬时过载造成的失效。11,在设计电路及结构设计时和选用元器件时,应尽量降低环境影响的灵敏性,以保证在最坏环境下的可靠性。12,尽量压缩设备工作频率带宽,以抑制干扰的输入。13,在设备中,尽量控制脉冲波形前沿上升速度和宽阔,以减少干扰的高频分量,(在满足电气性能的情况下)。14,在设备电路中设置各种滤波器以减少各种干扰。15,必须记住,最有效的电磁干扰控制技术,应在设计部件和系统的最初阶段加以采用。16,集成电路对结温和输出负载进行降额应用。17,为了保证设备的稳定性,电路设计时,要有一定功率裕量,通常应有20-30%的裕量,重要地方可用50-100%的裕量,要求稳定性、可靠性越高的地方,裕量越大。18,在设计电路时,应对那些随温度变化其参数也初之变化的元器件进行温度补偿,以使电路稳定。19,连接线布线设计要注意强弱信号隔离,输入线与输出线隔离。20,尽量缩短各种引线(尤其高频电路),以减少引线电感和感应干扰。21,直流电源线应用屏蔽线;交流电源线应用扭绞线。22,应尽量使用负逻辑接收电路及使用高阻抗电路。如CMOS、HTL数字电路、差动输入运算放大器。尽量采用数字电路。