四边形知识点经典总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1四边形知识点:一、关系结构图:二、知识点讲解:1.平行四边形的性质(重点):ABCD是平行四边形.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(2.平行四边形的判定(难点):ABDOC2CDABABCDO.3.矩形的性质:因为ABCD是矩形.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所((4)是轴对称图形,它有两条对称轴.4矩形的判定:矩形的判定方法:(1)有一个角是直角的平行四边形;(2)有三个角是直角的四边形;(3)对角线相等的平行四边形;(4)对角线相等且互相平分的四边形.四边形ABCD是矩形.5.菱形的性质:因为ABCD是菱形.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(6.菱形的判定:边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四边形四边形ABCD是菱形.7.正方形的性质:ABCD是正方形.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所(8.正方形的判定:一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形ABCD是正方形.ABDOCADBCADBCOCDBAOCDBAO3名称定义性质判定面积平行四边形两组对边分别平行的四边形叫做平行四边形。①对边平行;②对边相等;③对角相等;④邻角互补;⑤对角线互相平分;⑥是中心对称图形①定义;②两组对边分别相等的四边形;③一组对边平行且相等的四边形;④两组对角分别相等的四边形;⑤对角线互相平分的四边形。S=ah(a为一边长,h为这条边上的高)矩形有一个角是直角的平行四边形叫做矩形除具有平行四边形的性质外,还有:①四个角都是直角;②对角线相等;③既是中心对称图形又是轴对称图形。①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;③定义。S=ab(a为一边长,b为另一边长)菱形有一组邻边相等的平行四边形叫做菱形。除具有平行四边形的性质外,还有①四边形相等;②对角线互相垂直,且每一条对角线平分一组对角;③既是中心对称图形又是轴对称图形。①四条边相等的四边形是菱形;②对角线垂直的平行四边形是菱形;③定义。①S=ah(a为一边长,h为这条边上的高);②(b、c为两条对角线的长)正方形有一组邻边相等且有一个角是直角的平行四边形叫做正方形具有平行四边形、矩形、菱形的性质:①四个角是直角,四条边相等;②对角线相等,互相垂直平分,每一条对角线平分一组对角;③既是中心对称图形又是轴对称图形。①有一组邻边相等的矩形是正方形;②有一个角是直角的菱形是正方形;③定义。①(a为边长);②(b为对角线长)三.精典例题解答:1.已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF。求证:(1)△ADF≌△CBE;(2)EB∥DF。证明:(1)∵AE=CF∴AE+EF=CF+FE即AF=CE又ABCD是平行四边形,∴AD=CB,AD∥BC∴∠DAF=∠BCE在△ADF与△CBE中4∴△ADF≌△CBE(SAS)(2)∵△ADF≌△CBE∴∠DFA=∠BEC∴DF∥EB例1图例2图2.如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形。证明:∵四边形ABCD是平行四边形∴OA=OC,OB=OD又∵AE=CF∴OA+AE=OC+CF即OE=OF∴四边形BFDE是平行四边形3.如图,在梯形纸片ABCD中,AD∥BC,ADCD,将纸片沿过点D的直线折叠,使点C落在AD上的点C’处,折痕DE交BC于点E,连结。求证:四边形是菱形。证明:根据题意可知则,,∵AD∥BC∴∴∠CDE=∠CED∴CD=CE∴∴四边形为菱形例3图54.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图)。试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想。解:HG=HB。证法1:连结AH,∵四边形ABCD,AEFG都是正方形∴∠B=∠G=90°由题意知AG=AB,又AH=AH∴Rt△AGH≌Rt△ABH(HL)∴HG=HB证法2:连结GB∵四边形ABCD,AEFG都是正方形∴∠ABC=∠AGF=90°由题意知AB=AG∴∠AGB=∠ABG∴∠ABC-∠ABG=∠AGF-∠AGB即∠HBG=∠HGB∴HG=HB5.如图,正方形ABCD绕点A逆时针旋转n°后得到正方形AEFG,边EF与CD交于点O。(1)以图中已标有字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直,交说明这两条线段互相垂直的理由;(2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为,求旋转的角度n。解:(1)我连结的两条相交且互相垂直的线段是____AO____和____DE____。理由如下:∵在Rt△ADO与Rt△AEO中,AD=AE,AO=AO,∴Rt△ADO≌Rt△AEO∴∠DAO=∠OAE(即AO平分∠DAE)∴AO⊥DE(等腰三角形的三线合一)注:其它的结论也成立如GD⊥BE。(2)∵四边形AEOD的面积为∴三角形ADO的面积=∵AD=2∴∴∠DAO=30°∴∠EAB=30°即旋转的角度是30°6例5图例6图6.四边形ABCD、DEFG都是正方形,连接AE、CG。(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想。证明:(1)如图,∵AD=CD,DE=DG,∠ADC=∠GDE=90°又∠CDG=90°+∠ADG=∠ADE∴△ADE≌△CDG∴AE=CG(2)猜想:AE⊥CG。证明:如图,设AE与CG交点为M,AD与CG交点为N∵△ADE≌△CDG∴∠DAE=∠DCG又∵∠ANM=∠CND∴△AMN∽△CDN∴∠AMN=∠ADC=90°∴AE⊥CG7.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明。证明:(1)在△ABC中,AB=AC,AD⊥BC∴∠BAD=∠DAC∵AN是△ABC外角∠CAM的平分线∴∠MAE=∠CAE∴又∵AD⊥BC,CE⊥AN∴∠ADC=∠CEA=90°∴四边形ADCE为矩形(2)当时(答案不唯一),四边形ADCE是正方形。证明:∵AB=AC,AD⊥BC于D7∴又∴DC=AD由(1)四边形ADCE为矩形∴矩形ADCE是正方形例8图8.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到处,折痕为EF。(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论。证明:(1)由折叠可知:,,∵四边形ABCD是平行四边形∴∠B=∠D,AB=CD,∠C=∠BAD∴∠B=∠D′,AB=AD′∠D′AE=∠BAD,即∠1+∠2=∠2+∠3∴∠1=∠3∴△ABE≌△AD′F(2)四边形AECF是菱形。由折叠可知:AE=EC,∠4=∠5∵四边形ABCD是平行四边形∴AD∥BC∴∠5=∠6∴∠4=∠6∴AF=AE∵AE=EC∴AF=EC又∵AF∥EC∴四边形AECF是平行四边形∵AF=AE∴四边形AECF是菱形。9.如下图,已知P正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD8于点F.(1)求证:BP=DP;(2)若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.思路分析:(1)解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.(2)不是总成立.当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DPDCBP,此时BP=DP不成立.说明:未用举反例的方法说理的不得分.(3)连接BE、DF,则BE与DF始终相等.在图中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC.从而有BE=DF10.为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案.提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种.解:以下为不同情形下的部分正确画法,答案不唯一.11.如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°。点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动。9(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围。(2)设,用t表示△AMN的面积。(3)求△AMN的面积的最大值,并判断取最大值时△AMN的形状。解:(1)过点N作BA的垂线NP,交BA的延长线于点P。由已知:,。∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°。在Rt△APN中,,即点N到AB的距离为。∵点N在AD上,,点M在AB上,,∴x的取值范围是。(2)根据(1),。(3)∵,∴当t=0时,即x=10时,有最大值25。当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN。此时,△AMN为等腰三角形。12.(08通州22改编)如图,在ABCD中,AB=8cm,AD=6cm,∠DAB=60°,点M是边AD上一点,且DM=2cm,点E、F分别是边AB、BC上的点,EM、CD的延长线交于G,GF交AD于O,设AE=CF=x,(1)试用含x的代数式表示△CGF的面积;(2)当GF⊥AD时,求AE的值。解:(1)∵在平行四边形ABCD中CD=AB=8,BC=AD=6∵DM=2,AD=6,∴AM=4,10取AM、ME中点P、Q,则由中位线定理知,PQ∥AE且。由AE∥GD可得PQ∥GD从而△DGM≌△PQM∴,过点F作FN⊥CD于N,∵∠C=∠A=60°,CF=x∴∴(2)当GF⊥AD时,∵AD∥BC,∠GDA=∠A=60°∴∠OGD=30°,GF⊥BC∴在Rt△GFC中,即:∴∴∴当GF⊥AD时,

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功