北师大版初中数学八年级下册精品教案全集

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

课题:课时安排:课题名称相似多边形的性质(一)NO:1课型新授教材分德育点经历探索相似多边形的过程,并在探究过程中发展学生积极的情感、态度、价值观,体验解决问题策略的多样性。创新点理解并掌握相似三角形对应高的比、对应角平分线的比、以及对应中线的比都等于相似比。能力点培养学生的分析能力和数形结合的能力析知识点理解并初步掌握相似多边形周长的比等于相似比、面积的比的等于相似比的平方,并能用来解决简单的问题。学情分析本节课共分2课时,第1课时主要探索相似三角形中对应高的比、对应中线的比与相似比的关系;第2课时探索相似多边形的周长笔、面积比与相似比的关系。教学流程(内容概要)师生互动(问题设计、情景创设)一、引入AB若正方形ABCD边长为1周长为4,面积为1若边长增大一倍,变为2.周长为8,面积为4若边长,变为3.周长为12,面积为9CD若边长,变为N.周长为4N,面积为NN钳工小王准备按照比例尺3:4的图纸制作三角形零件,该零件的横截面为ΔABC画在图纸上是ΔDEF,CH,FG分别是它们的高.CFAHBEGD三角形内角和定理的证明教学设计南京市大厂中学袁新兵蔡祝华一、教材与学生现实的分析1、三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。其中辅助线的作法、把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用。2、三角形内角和定理的内容,学生在小学已经熟悉,但在小学是通过实验得出的,要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添辅助线是解决数学问题(尤其是几何问题)的重要思想方法,它同代数中设末知数是同一思想。3、学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,而且也渗透了三角形的内角和是180°的证明,它的证明借助了平角定义,平行线的性质。用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。因此定理的证明应是本节引导和探索的重点。辅助线的作法是学生在几何证明过程中第一次接触,只要教师设置恰当的问题情境,学生再由实验操作、观察、抽象出几何图形,用自主探索的方式是可发完成的,并且这样的过程可以更好地发展他们的创造能力和实验能力。从本节开始训练学生将命题翻译为几何符号语言,写出已知、求证,学会分析命题的证明思路,对培养学生的思维能力和推理能力将起到重要的作用。教学目标教学知识点三角形内角和定理的证明。能力训练要求掌握三角形内角和定理,并初步学会利用辅助线证明,同时培养学生观察、猜想、和论证能力。情感与价值观要求通过新颖、有趣的实际问题,来激发学生的求知欲。教学重点三角形内角和定理的证明思路及应用。教学难点三角形内角和定理的证明方法。教学方法实验法,讨论法。教学过程设计说明创设问题情境我们在七年级曾经把一个三角形的三个内角撕下来拼在一起得到一个平角,由此得到三角形的内角和是180°。教师指出:这只是实验得出的命题,不能当做定理,只有经过严格的几何证明,证明命题的正确性,才能作为几何定理,今后,在几何里,常采用这种方法得到新知识。那么如何证明此命题是真命题呢?能否用学过的旧知识作平行线,利用平行线的性质来证明呢?从学过的知识引入符合学生的认知规律,且小学已知三角形三个内角和是180°。学学生回忆证明一个命题的步骤:生自主探究①画图②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。③分析、探究证明方法。有本章前面几节作为基础,学生有能力画图,写已知,求证。创设问题情境教师引导:要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?学生思考与180°有关的角后回答,可拼成:①平角,②两平行线间的同旁内角。教师引导,要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?下面同学们利用准备好的三角形纸片拼一拼,画一画。联想前面撕角拼角的方法,学生能想到。让学生体会转化的数学思想方法,把新知识化为旧知识。学生通过自主探究,可以得出以下几种辅学生通过观ABCDE1学生自主探究助线的作法:①如图1,延长BC得到一平角∠BCD,然后以CA为一边,在△ABC的外部画∠1=∠A。②如图1,延长BC,过C作CE∥AB③如图2,过A作DE∥AB④如图3,过C作CD∥AB。察分析、归纳,使思维达到高潮,由感受性认识上升到理性认识。请不同画法的学生板演,并口述画图方法,叙述不恰当时,同学可改正,画法4,部分学生可能想到。⑤如图4,在BC边上任取一点P,作PD∥AB,PE∥AC。学生可能还有其它画法。辨通过以上分析、研究,让不同做法的学生进一步搞ABC图2DEABC图3DABC图4EFP图1析与研讨讲解依据。①根据平行线的判定及性质,利用同位角把三角形三内角转化为一个平角。②根据平行线的性质,利用内错角和同位角,把三角形三内角转化为一个平角。③根据平行线的性质,利用内错角,把三角形三内角转化为一个平角。④根据平行线的性质,利用内错角把三角形三内角转化为两平行线间的同旁内角。⑤根据平行线的性质,利用内错角、同位角或同旁内角把三角形三内角转化为一个平角。清作辅助线的思路和合乎逻辑的分析方法,充分让学生表述自己的观点,这个过程对培养学生的能力极为重要,依据不充分,学生可争论。学生自主探究根据以上几种辅助线的作法,选择一种,师生合作,写出示范性证明过程。其余由学生自主完成证明过程。目的是培养学生的思维能力和推理能力。1、弄清证明命题的必要性及步骤。ABCD反思与评价2、如何将文字语言转化为几何语言。3、三角形内角和定理的证明是借助于什么获得(实验、观察、添加辅平行线),平行线是以后几何中常作的辅助线。4、添辅助线的技巧:通过平行线把三角形三个内角转化为平角或两平行线间的同旁内角,即把新知识转化为旧知识去解决。引导学生进行总结和概括,培养学生的归纳概括能力。例题讲解例1△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,如图,求∠DBC的度数。学生自主探索,教师巡视、诊断,不同解法的学生板演,学生辨析。使学生灵活应用三角形内角和定理。用代数方法解决几何问题(方程思想)是重要的方法。思维拓展练1、已知△ABC中,DE∥BC,∠A=60°,∠C=70°,求证:∠ADE=50°进一步使学生灵活应用三角形内角和定理。习2、△ABC中,∠A=n°,∠ABC、∠ACB的平分线交于点O,求证:∠BOC=90°+21n°课后思考把三个内角集中在一起有很多种方法,下面提供其中的两种,课后写出证明方法拓展学生的思维。小结我们证明了一个很有用的三角形内角和定理,证明思想是,运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角。辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它。频数与频率(第一课时)教学目标:1、理解频数、频率等概念,会对一组数据进行统计,并列出相应的统计图表。2、能根据数据处理的结果,做出合理的判断与预测,从而解决实际问题,并在这一过程中体会统计对决策的作用。教学重难点:重点:理解频数、频率的概念并绘制出相应的统计图表,从而作出合理的判断和预测。难点:正确列出统计图有。教学准备:学生课前先对本班同学最喜爱的球类体育运动项目做调查,教师制作好投影片或课件。设计思路:通过学生交流各自调查的结果,使学生经历收集整理数据的过程,也体会到其必要性;再通过学生亲自动手绘制各种统计数据的方法,进一步让学生感受统计对解决实际问题的重要性。教学过程:一、创设情境(投影显示问题)提问:你们喜爱球类体育运动吗?请从下面几项中选出你最喜爱的球类运动项目。A、篮球B、排球C、足球D、羽毛球E、乒乓球(每小组分别请一位同学到黑板上进行统计,将每位同学最喜爱的球类运动用字母表示出来。通过活动,使学生再次经历数据收集与整理的过程)二、想一想(投影显示问题)问题:1、从上面统计情况来看,你能很快说出全班同学最喜爱的球类运动吗?(如果统计结果非常明显,教师可做适当改变或转移到课本第159的例子)2、你们认为这种数据统计方式好不好,能否设计出比较好的表示方式?(此问题目的让学生进一步体会数据整理与表示的必要性,帮助学生复习数据表示的几种方法)三、活动与探究(学生交流各自课前对本班同学最喜爱的球类运动统计的方法,教师对参加交流的同学加以肯定并作出适当的点评。)本问题除了课本上给出的列频数颁布表、频率颁布直方图外,还可以提醒学生用数据的其他表示方法进行统计,如画扇形统计图、折线统计图等。四、讲解概念1、频数:每个对象出现的次数。2、频率:每个对象出现的次数与总次数的比值。(在讲解这两个概念时,切忌不要生搬硬记,要结合上述具体情况加以分析,让学生体会其意义,如有25人喜爱篮球运动,则把篮球的频数记为25,再用25除以全班总人数即得喜爱篮球运动的人的频率)五.做一做对课本158页“读一读”进行统计,看看哪个汉字的使用频率最高?(通过对这个问题的解决,使学生进一步理解频数、频率的意义)七.课堂小结本节课的主要内容是:1、学会用正确的统计方式表示一组数据。2、理解频数、频率。(可以用提问的方式进行小结)八.布置作业:课本习题5.3第1、2题定义与命题课时2【教学目标】一、教学知识点1.命题的组成.2.命题真假的判断。二、能力训练要求:1.使学生能够分清命题的条件和结论,能判断命题的真假2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法三、情感与价值观要求:1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一2.帮助学生了解数学发展史,拓展视野,激发学习兴趣3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值【教学重点】准确的找出命题的条件和结论【教学难点】理解判断一个真命题需要证明【教学方法】探讨、合作交流【教具准备】投影片【教学过程】一、情景创设、引入新课师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么?新课:(1)观察下列命题,你能发现这学生活动一——探索命题的结构特征学生观察、分组讨论,得出结论:(1)这五个命题都是用“如果……那么……”形式叙述的些命题有什么共同结构特征?与同伴交流。1.如果两个三角形的三条边对应相等,那么这两个三角形全等。2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。4.如果一个四边形的对角线相等,那么这个四边形是矩形。5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果……那么……”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。二、例题讲解:例1:师:下列命题的条件是什么?(2)这五个命题都是由已知得到结论(3)这五个命题都有条件和结论学生活动二——探索命题的条件和结论生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相结论是什么?1.如果两个角相等,那么他们是对顶角;2.如果ab,bc,那么a=c;3.两角和其中一角的对边对应相等的两个三角形全等;4.菱形的四条边都相等;5.全等三角形的面积相等。

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功