理正深基坑软件应用参数说明1.各种支护结构计算内容排桩、连续墙单元计算包括以下内容:⑴土压力计算;⑵嵌固深度计算;⑶内力及变形计算;⑷截面配筋计算;⑸锚杆计算;⑹稳定计算:整体稳定、抗倾覆、抗隆起、抗管涌承压水验算。其中内力变形计算、截面配筋计算及整体稳定计算与规范无关,其他计算按选择的规范采用相应计算方法。水泥土墙单元计算包括以下内容:⑴土压力计算;⑵嵌固深度计算;⑶内力及变形计算;⑷截面承载力验算;⑸锚杆计算;⑹稳定验算:整体稳定、抗倾覆、抗滑移、抗隆起、抗管涌承压水验算。其中内力变形计算、截面配筋计算及整体稳定计算与规范无关,其他计算按选择的规范采用相应计算方法。土钉墙单元计算包括以下内容:⑴主动土压力计算;⑵土钉抗拉承载力计算;⑶整体稳定验算;⑷土钉选筋计算。系统仅提供《建筑基坑支护技术规程》(JGJ120-99)及《石家庄地区王长科法》计算方法,放坡单元计算包括以下内容:系统仅提供整体稳定验算.2.增量法和全量法?(1)全量法是4.3版本以前采用多计算方法,采用这种计算时不能任意指定工况顺序。(注意:采用该方法会使5.0版本某些新增数据丢失。)所谓总量法,就是在施工的各个阶段,外力是实际作用在围护结构上的有效土压力或其它荷载,在支承处应考虑设置支承前该点墙体已产生的位移。由此就可直接求得当前施工阶段完成后围护结构的实际位移和内力。(2)增量法:采用这种方法,可以更灵活地指定工况顺序。所谓增量法计算,就是在各个施工阶段,对各阶段形成的结构体系施加相应的荷载增量,该增量荷载对该体系内各构件产生的内力与结构在以前各阶段中产生的内力叠加,作为构件在该施工阶段的内力,这样就能基本上真实地模拟基坑开挖的全过程。因此,在增量法中,外力是相对于前一个施工阶段完成后的荷载增量,所求得的围护结构的位移和内力也是相对于前一个施工阶段完成后的增量,当墙体刚度不发生变化时.与前一个施工阶段完成后已产生的位移和内力叠加,可得到当前施工阶段完成后体系的实际位移和内力。参考理正深基坑帮助文件单元计算编制原理/内力变形计算/内力、位移计算/弹性法。3.弹性法计算方法中的“m”法、“C”法、“K”法?桩在水平荷载作用下,其水平位移(x)越大时,侧压力(即土的弹性抗力)(σ)也越大,侧压力大小还取决于:土体的性质,桩身的刚度大小,桩的截面形状,桩的入土深度。侧压力的大小可用如下公式表达:σ=Cx式中C——土的水平基床系数,它是反映地基土“弹性”的一个指标,表示单位面积土在弹性限度内产生单位变形时所需施加的力,其大小与地基土的类别、物理力学性质有关。它的单位为kN/m3.C值通过各种试验方法取得,如可以对试桩在不同类别土质及不同深度实测x及σ后反算得到。大量试验表明,基床系数C值的大小不仅与土的类别及性质有关,而且也随着深度而变化。目前采用的基床系数分布规律的几种不同图式如图所示。(1)基床系数C随深度成正比例增加,如图a所示,即C=mZ式中m——比例系数。其值可以根据实验实测决定,无实测数据时,可参考表1及表2(公路规程)中的数值选用。按此图式来计算桩在外荷载作用下各截面内力的方法通常简称为“m”法。表1比例系数m(2)基床系数C在第一个零变位点(如图中b)以下(Z≥t时):C=K=常量当0≤Z≤t时,C沿深度成曲线变化(可近似地假定为按直线增加)。K值可按实测确定,无实测数据时可参照表3中的数据选用。按此图式计算桩在外荷载作用下的各截面内力的方法,通常简称为“K”法。(2)基床系数C随深度成抛物线规律增加,(如图中c),即C=cZ0.5式中c——比例系数,其值可以根据实测确定。无资料时,参照表2选用。表2非岩石土的比例系数m、K、c值表表3水平向基床系数KH4.瑞典条分法、bishop法、janbu法?瑞典条分法基本原理:当按滑动土体这一整体力矩平衡条件计算分析时,由于滑面上各点的斜率都不相同,自重等外荷载对弧面上的法向和切向作用分力不便按整体计算,因而整个滑动弧面上反力分布不清楚;另外,对于Φ>0的粘性土坡,特别是土坡为多层土层构成时,求W的大小和重心位置就比较麻烦。故在土坡稳定分析中,为便于计算土体的重量,并使计算的抗剪强度更加精确,常将滑动土体分成若干竖直土条,求各土条对滑动圆心的抗滑力矩和滑动力矩,各取其总和,计算安全系数,这即为条分法的基本原理。该法也假定各土条为刚性不变形体,不考虑土条两侧面间的作用力。与瑞典条分法相比,简化的毕肖普法由于考虑了条块间水平力的作用,得到的安全系数略高一些,但它同样不能满足所有的平衡条件,还不是一个严格的方法,由此产生的误差约为2%~7%。该法假定各土条底部滑动面上的抗滑安全系数均相同,即等于滑动面的平均安全系数。同时,将土坡稳定安全系数定义为沿整个滑裂面的抗剪强度与实际产生的剪应力之比,这不仅使安全系数的物理意义更加明确,而且使用范围更广泛,为以后非圆弧滑动分析及土条界面上条间力的各种考虑方式提供了有利条件。由于该法计算不很复杂,精度较高,所以是目前工程中很常用的一种方法。普遍条分法的特点是假定条块间水平作用力的位置。在这一前提下,每个条块都满足全部静力平衡条件和极限平衡条件,滑动土体的整体力矩平衡条件也自然得到满足,而且它适用于任何滑动面而不必规定滑动面是一个圆弧面,所以称为普遍条分法。参考理正帮助文件单元计算编制原理/稳定计算/整体稳定计算/瑞典条分法、简化bishop法、janbu法。4.地表沉降的三角形法、指数法、抛物线法?参考《基坑工程手册》P213-216.参考理正帮助文件中单元编制计算原理/内力变形计算/3.2沉降计算。6.稳定计算采用应力状态:总应力法和有效应力法?在选用土层参数时,应根据所选用的应力状态选择相应的参数指标。采用总应力法,计算下滑力、抗滑力时,浸水部分土条重量采用饱和重度直接计算;采用有效应力法,计算抗滑力时,浸水部分土体需考虑空隙水压力的影响,但下滑力计算与总应力法相同。计算公式参考理正帮助文件单元计算编制原理/稳定计算/整体稳定计算/瑞典条分法/总应力法和有效应力法。7.有关水压力计算问题当采用水土分算时,选择全量法时,系统延续4.31版经典法土压力计算原则,基坑两侧水压力不做抵消;选择增量法或《基坑工程手册》法时,系统计算经典法土压力时,对基坑两侧水压力进行抵消,因此输出的经典法土压力结果会有所不同,但对内力结果几乎没有影响。8.支锚刚度(MN/m)的计算?计算公式参考《建筑基坑支护技术规程》(JGJ120-99)附录C。参考理正深基坑帮助文件单元编制原理/锚杆计算/锚杆(索)刚度计算。以上是一个基本的计算,如果现场进行了基本了试验,则以基本试验为准。而且有一个更简单的方法,软件可以自动计算,方法是:先凭经验输入一个刚度值,当计算到锚杆一项时,软件会计算出一个“锚杆刚度”,这时点击上部的“应用刚度计算结果”按键,然后终止计算。接着用这一刚度重新计算到锚杆一项,如此重复迭代操作2-4次后刚度值就基本不变了,此时的刚度取值已基本合理。对于内撑,软件不能自动计算。可以参考《建筑基坑支护技术规程》(JGJ120-99)附录C公式C.2.2进行计算:但要注意,由于软件会用这个交互的刚度先除以前面交互的水平间距,所以输入刚度时,只要用公式C.2.2的前半部分计算所得即可,即2αEA/L。9.计算书中锚杆内力设计值指的是什么?是材料抗力还是锚固体与土层的锚固力,还是根据土压力计算所需的材料抗力或者锚固体与土层的锚固力?是锚杆水平拉力设计值,既不是材料抗力也不是锚固力,而是结构计算得到的锚杆处的支点力。10.锚索轴力值指的是锚索材料本身的设计值还是锚固体与土层的摩阻力值?锚索轴力值指的是锚索材料本身的设计值。11.基坑中排桩加预应力锚杆,如何控制预应力值?1)《砼结构设计规范》中6.1.3条中规定“预应力钢筋的张拉控制应力不宜超过表6.1.3规定的张拉控制应力限值。这是对预应力砼构件施加预应力的要求。对于基坑中锚索(锚杆)施加预应力时,应执行《建筑基坑支护技术规程》,该《规程》中4.4.5条规定“锚杆预加力值(锁定值)应根据地层条件及支护结构变形要求确定,宜取为锚杆轴向受拉承载力设计值的0.50~0.65倍。”注意:对锚杆轴向受拉承载力设计值。2)如要求加预应力,可按无预应力计算一次,得到锚杆的轴力设计值,预应力取其0.5~0.65(基坑规程),再计算一次即可,此处不可迭代。计算时,选上锚杆计算,锚杆的轴力设计值就是锚杆计算对话框中的锚杆内力实用值,锚杆内力实用值=锚杆最大内力弹性法/经典法计算值*基坑重要性系数*分项系数。注:有些用户为了减少锚杆和锚索的长度,而施加预应力,是概念错误。施加预应力后,如果计算的锚杆力小于预加力,取预加力;如果计算的锚杆力大于预加力,取计算的锚杆力。所以施加预应力后,锚杆力通常大于不施加预应力时的锚杆力。而锚杆长度是根据锚杆力计算得到的,因此施加预加力后不能缩短锚杆或锚索的长度。施加预加力,主要是控制变形。12.输入土层参数时,水下的C、Φ值如何确定。地质报告中提供的固结快剪的C、Φ值有什么参考价值?固结快剪,顾名思义,就是让土体充分固结后进行快剪试验。如果是基坑或边坡,严格要求是要做三轴剪切试验。但好多地方都不做的,就是为了时间和钱。固结快剪的指标,是肯定不能用于水下的,如果是粉土、砂土,折减的值较大,如果是粉质粘土,折减系数要小点,粘土的折减系数最小。具体折减大小应该问当地有经验的工程师,他们比较熟悉当地的土质。13.土钉墙计算中土钉墙背倾角α怎么考虑,怎么取值?将加筋部分土体看作一个重力式挡土墙,背倾角α就是这个挡墙的墙背的角度。14.土钉长度的选择?土钉长度的三个选择,建议取局部抗拉结果,因为这样可以保证土钉的最小长度可以同时满足局部抗拉和内部稳定两项计算,如果两项都计算,这样也比较快捷。可以更真实的反映纯内部稳定需要的土钉长度。另外两种方式更适合于只做内部稳定计算时用。15.经典方法与弹性方法有何区别?①经典方法:其中比较有代表性的是等值梁法,将内撑和锚杆处假定为不动的连杆支座(即不动的铰支座)。计算出桩(墙)两侧的土压力(主动土压力及被动土压力)、水压力及其分布后,按静力平衡法计算支护构件各点的内力。②弹性方法:将作用桩墙上的支锚点简化为弹簧,将基坑开挖面以下被动侧土体简化成水平向的弹簧,将主动侧(全桩、全墙)的土压力施加到桩墙之上。利用有限元或其他的数值解,即可得到其内力及位移。③两种方法的对比如下表:支锚点被动区土体桩身刚度内力计算方法经典法简化为支点被动土压力不考虑等值梁法弹性法弹簧弹簧考虑有限元方程{[K]}{W}={F}④两种方法不存在绝对对错和优劣问题。由于经典法的诸多假定,如锚杆处假设成支座,被动土压力定值,不考虑变形等,使得弹性法看起来更接近真实的受力,但如果没有经验,支锚刚度,土的m值(决定土弹簧的刚度)等取得不合适,计算出的内力就会有差异。16.计算m值时,输入的“基坑底面位移估算值d”的含义是什么?“基坑底面位移估算值d”是指基坑底面的水平位移。该值影响m值的选择;对于有经验地区,可直接采用m值;对于无经验地区,m值采用规范建议公式计算。一般采用水平位移为10mm计算,当水平位移大于10mm时,应进行适当的修正,不能严格按规范建议公式计算。否则,计算的基坑底面处水平位移会增大,计算的m值会更小,导致水平位移更大,m值更小,结果不一定收敛。使用时要特别注意,建议不要进行迭代计算。17.如何输入锚杆(索)数据?锚杆和锚索数据输入的方法相同。设计采用锚索时,只需在支锚栏里输入锚索的参数即可。界面交互的各参数含义如下:支锚类型——可以选择锚杆、锚索和内支撑;水平间距——锚杆的水平向(沿基坑边线方向)间距;竖向间距——本道锚杆距上一道锚杆的距离,对于第一道锚杆指到基坑顶面的距离;入射角——锚杆与水平面的夹角,以顺时针为正;总长——锚杆的总长;锚固段长度——锚杆锚固段的长度;预加力——锚杆上的预加力,对于锚杆和锚索指预加力的水平分量,对于内撑为内撑的预加力;预压力方向指向基坑外侧为正;为单根锚杆上施加的预加力;支锚刚