知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【例2】若式子13x有意义,则x的取值范围是.[来源:学*科*网Z*X*X*K]举一反三:1、使代数式221xx有意义的x的取值范围是2、如果代数式mnm1有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=5x+x5+2009,则x+y=解题思路:式子a(a≥0),50,50xx5x,y=2009,则x+y=2014举一反三:1、若11xx2()xy,则x-y的值为()A.-1B.1C.2D.33、当a取什么值时,代数式211a取值最小,并求出这个最小值。已知a是5整数部分,b是5的小数部分,求12ab的值。若17的整数部分为x,小数部分为y,求yx12的值.知识点二:二次根式的性质【知识要点】1.非负性:是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.()()aaa20.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:aaa()()203.aaaaaa200||()()注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4.公式aaaaaa200||()()与()()aaa20的区别与联系(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)()a2表示一个数的算术平方根的平方,a的范围是非负数.(3)a2和()a2的运算结果都是非负的.【典型例题】【例4】若22340abc,则cba.举一反三:1、已知直角三角形两边x、y的长满足|x2-4|+652yy=0,则第三边长为______.2、若1ab与24ab互为相反数,则2005_____________ab。(公式)0()(2aaa的运用)【例5】化简:21(3)aa的结果为()A、4—2aB、0C、2a—4D、4举一反三:3已知直角三角形的两直角边分别为2和5,则斜边长为(公式)0a(a)0a(aaa2的应用)【例6】已知2x,则化简244xx的结果是A、2xB、2xC、2xD、2x举一反三:2、化简2244123xxx得()(A)2(B)44x(C)-2(D)44x3、已知0a,化简求值:22114()4()aaaa【例7】如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简│a-b│+2()ab的结果等于()A.-2bB.2bC.-2aD.2a举一反三:实数a在数轴上的位置如图所示:化简:21(2)______aa.【例8】化简21816xxx的结果是2x-5,则x的取值范围是()(A)x为任意实数(B)1≤x≤4(C)x≥1(D)x≤1举一反三:若代数式22(2)(4)aa的值是常数2,则a的取值范围是()A.4a≥B.2a≤C.24a≤≤D.2a或4a【例9】如果11a2aa2,那么a的取值范围是()A.a=0B.a=1C.a=0或a=1D.a≤1举一反三:1、如果2693aaa成立,那么实数a的取值范围是().0.3;.3;.3AaBaCaDa2、若03)3(2xx,则x的取值范围是()(A)3x(B)3x(C)3x(D)3x【例10】化简二次根式22aaa的结果是(A)2a(B)2a(C)2a(D)2a1012a1、把根号外的因式移到根号内:当b>0时,xxb=;aa11)1(=。知识点三:最简二次根式和同类二次根式【知识要点】1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式.2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。【典型例题】【例11】下列根式中能与3是合并的是()A.8B.27C.25D.21举一反三:1、下列各组根式中,是可以合并的根式是()A、318和B、133和C、22abab和D、11aa和2、如果最简二次根式83a与a217能够合并为一个二次根式,则a=__________.知识点四:二次根式计算——分母有理化【知识要点】1.分母有理化定义:把分母中的根号化去,叫做分母有理化。2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。有理化因式确定方法如下:①单项二次根式:利用aaa来确定,如:aa与,abab与,ba与ba等分别互为有理化因式。②两项二次根式:利用平方差公式来确定。如ab与ab,abab与,axbyaxby与分别互为有理化因式。3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。【典型例题】【例13】把下列各式分母有理化(1)2525abba(2)5353举一反三:1、已知2323x,2323y,求下列各式的值:(1)xyxy(2)223xxyy知识点七:根式比较大小【知识要点】1、根式变形法当0,0ab时,①如果ab,则ab;②如果ab,则ab。2、平方法当0,0ab时,①如果22ab,则ab;②如果22ab,则ab。3、分母有理化法通过分母有理化,利用分子的大小来比较。4、分子有理化法通过分子有理化,利用分母的大小来比较。5、倒数法6、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。7、作差比较法在对两数比较大小时,经常运用如下性质:①0abab;②0abab8、求商比较法它运用如下性质:当a0,b0时,则:①1aabb;②1aabb【典型例题】【例22】比较35与53的大小。【例23】比较231与121的大小。【例24】比较76与65的大小。【例26】比较73与873的大小。已知:,求的值.