气相色谱仪原理及构造

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

气相色谱仪构造及原理作者:崔山京博控股分析检测中心气相色谱仪构造1.气路系统:包括气源、气体净化、气体流速控制阀门和压力表等;2.进样系统:包括进样器、汽化室(将液体样品瞬间汽化为蒸气)等;3.分离系统:包括色谱柱和柱温控制装置(色谱柱箱)等;4.检测系统:包括检测器,控温装置等;5.操作系统:包括中文显示器、触摸式参数输入键盘;6.记录系统:包括放大器、数据处理系统(色谱工作站)等。汽化室TCD检测器FID检测器气源部分汽化室back热导池检测器(TCD)工作原理:热导检测器由热导池体和热敏元件组成。热敏元件是四根电阻值完全相同的金属丝(钨丝或白金丝),R1R2R3R4是阻值相等的热敏电阻作为四个臂接入惠斯顿电桥中,由恒定的电流加热。如果热导池只有载气通过,载气从两个热敏元件带走的热量相同,四个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样品气和载气的热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。也就是说当参比池(只通过纯载气)与测量池都只有一定流量的纯载气通过时,电桥平衡(R1R4=R2R3),无信号输出(0mv,走基线),当样品组分加载气通过测量池时,此时参比池还是由纯载气通过,由于组分与载气的导热系数不同,使热敏元件的电阻值和温度发生变化,电桥失去平衡(R1R4≠R2R3),图3-9的AB两端产生电位差,有信号输出,且信号与组分浓度成正比。back氢火焰检测器(FID)原理:氢气由喷嘴加入,与空气混合点火燃烧,形成氢火焰。通入空气助燃。极化极和收集极通过高阻、基流补偿和50~350V的直流电源组成检测电路,测量氢火焰中所产生的微电流。该检测电路在收集极和极化极间形成一高压静电场。H2+O2燃烧能产生2100℃高温,使被测有机组分电离。载气(N2)本身不会被电离,只有载气中的有机杂质和流失的固定液会在氢火焰中被电离成正、负离子和电子。在电场作用下,正离子移向收集极(正极)。负离子和电子移向极化极(负极)。形成的微电流经高电阻,在其两端产生电压降,经微电流放大器放大后从输出衰减器中取出信号,在记录仪中记录下来即为基流,或称本底电流、背景电流。只要载气流速、柱温等条件不变,基流亦不变。如载气纯度高,流速小,柱温低或固定相耐热度性好,基流就低,反之就高。基流越小就越容易测到信号电流的微小变化。通常通过调节“基流补偿”使输入电阻的基流降至零。一般进样前均要使用“基流补偿”,将记录仪上的基线调至零。无样品时两极间离子很少,当载气加组分进入火焰时,在氢火焰作用下电离生成许多正、负离子和电子,使电路中形成的微电流显著增大。此即组分的信号,离子流经高阻放大、记录即得色谱峰。有机物在氢气中燃烧,被裂解产生含碳的自由基CnHm-------CH生成的自由基,与火焰外面扩散的激发态氧反应。CH+O*———2CHO++e+ΔH形成的CHO+与氢气燃烧产生的水蒸气相碰撞,生成H3OCHO++H2O-----------H3O++CO在外电场作用下,CHO+和H3O+等正离子向负极移动,而被正极吸收,形成微电流。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,可用于痕量有机物分析。其缺点是不能检测惰性气体、空气、水、C0,CO2、NO、S02及H2S等。FID的灵敏度与氢气、空气和氮气的比例有直接的关系,因此要注意优化。一般三者的比例接近或等于1:10:1,如氢气30~40ml/min,空气300~400ml/min,氮气30~40ml/min。另外,有些仪器设计有不同的喷嘴分别用于填充柱和毛细柱,使用时要查看说明书。back尾吹气的使用尾吹气是从色谱柱出口直接进入检测器的一路气体,又叫补充气或辅助气。填充柱不用尾吹气,而毛细管大多采用尾吹气。这是因为毛细管柱内载气流量太低(常规为1~3ml/min),不能满足检测器的最佳操作条件(一般检测器要求20ml/min的载气流量)。在色谱柱后增加一路载气直接进入检测器,就可保证检测器在高灵敏度状态下工作。尾吹气的另一个重要作用是消除检测器的死体积的柱外效应。经分离的化合物流出色谱柱后,可能由于管道体积的增大而出现体积膨胀,导致流速缓慢,从而引起谱带展宽。加入尾吹气后就消除了这一现象。尾吹气流量究竟多少合适呢?这要看所用检测器和色谱柱的尺寸而定。比如,用0.53mm大口径柱时,柱内流量可达15ml/min,这对微型TCD和单丝TCD来说已经够大了,就没有必要再加尾吹气了。而对于FID、NPD、FPD则需要至少10ml/min的尾吹气的流量,对于ECD就需要20ml/min的尾吹气(ECD一般需要载气总流量大于25ml/min)。使用常规或微径柱时,尾吹气流量应相应加大。经验参考值为:FID、NPD、FPD需要柱内载气和尾吹气的流量之和为30ml/min左右,ECD则需要40~60ml/min。当需要在最高灵敏度状态下工作时,应针对具体样品优化尾吹气流量以及其他气体流量。一般情况下尾吹气所用气体类型应与载气相同。TCD使用注意事项•1.确保热丝不被烧断!在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝可能被烧断,致使检测器报废!同时,关机时一定要先关检测器电源,然后关载气。任何时候进行有可能切断通过TCD载气流量的操作,都要关闭检测器电源。这是TCD操作必须遵循的规则!•2.载气中含有氧气时,会使热丝寿命缩短,所以有TCD时载气必须彻底除氧。而且不要使用聚四氟乙烯作载气输送管,因为它会渗透氧气。•3.载气种类对TCD的灵敏度影响较大。原则是讲,载气与被测物的传热系数之差越大越好,故氢气或氦气作载气时比氮气作载气时的灵敏度高。当然,要测定氢气时就必须用氮气作载气。检测器保养•为防止检测器被污染,检测器温度设置不应底于色谱柱实际工作的最高温度。一旦检测器被污染,轻则灵敏度下降或噪声增大,重则点不着火。消除污染的办法是清洗,主要是清洗喷嘴表面和气路管道。具体办法是拆下喷嘴,依次用不同的溶剂(丙酮、氯仿和乙醇)浸泡,并在超声波水浴中超声10min以上。还可用细不锈钢丝穿过喷嘴中间的孔,或用酒精灯烧掉喷嘴内的油状物,以达到彻底清洗的目的。有时使用时间长了,喷嘴表面会积碳(一层黑色的沉积物),这会影响灵敏度。可用细纱纸轻轻打磨表面除去。清洗之后将喷嘴烘干,再装在检测器是进行测定。

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功