2017-2018学年吉林省松原市宁江区九年级(上)期末数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(2分)下列各式属于最简二次根式的是()A.B.C.D.3.(2分)下列事件是必然事件的是()A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180°4.(2分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()A.sinα=cosαB.tanC=2C.sinβ=cosβD.tanα=15.(2分)把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为y=2x2,则原抛物线的解析式为()A.y=2(x﹣1)2+3B.y=2(x+1)2+3C.y=2(x﹣1)2﹣3D.y=2(x+1)2+36.(2分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)7.(3分)已知,那么的值为.8.(3分)当时,二次根式在实数范围内有意义.9.(3分)已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m的值是.10.(3分)在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.11.(3分)如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k=.12.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为.[来源:学_科_网Z_X_X_K]13.(3分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.14.(3分)如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3③a+b+c>0④当x>1时,y随x的增大而增大.正确的说法有.三、解答题(共4小题,满分20分)15.(5分)计算:.16.(5分)解方程:(x﹣1)2=3(x﹣1).17.(5分)在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)18.(5分)如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切于点C时,另一边与圆两个交点A和B的读数恰好为“2”和“8”(单位:cm)求该圆的半径.四、解答题(共4小题,满分28分)19.(7分)在4×4的方格纸中的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出旋转后的三角形.20.(7分)已知函数y=﹣x2+mx+(m+1)(m为常数)(1)该函数的图象与x轴公共点的个数是A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.21.(7分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)22.(7分)如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(﹣2,0),B(0,1).(1)点C的坐标是;(2)将△ABC沿x轴正方向平移得到△A′B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数y=的图象上,求该反比例函数的解析式.五、解答题(共2小题,满分16分)23.(8分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).24.(8分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.六、解答题(共2小题,满分20分)25.(10分)将两个全等的Rt△ABC和Rt△DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由.26.(10分)如图所示,抛物线y=ax2+bx+c的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求△ABC的面积;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.2017-2018学年吉林省松原市宁江区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(2分)下列各式属于最简二次根式的是()A.B.C.D.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.(2分)下列事件是必然事件的是()A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180°【解答】解:A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件.故选D.4.(2分)△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是()A.sinα=cosαB.tanC=2C.sinβ=cosβD.tanα=1【解答】解:观察图象可知,△ADB是等腰直角三角形,BD=AD=2,AB=2,AD=2,CD=1,AC=,∴sinα=cosα=,故A正确,tanC==2,故B正确,tanα=1,故D正确,∵sinβ==,cosβ=,∴sinβ≠cosβ,故C错误.故选C.5.(2分)把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为y=2x2,则原抛物线的解析式为()A.y=2(x﹣1)2+3B.y=2(x+1)2+3C.y=2(x﹣1)2﹣3D.y=2(x+1)2+3【解答】解:将抛物线y=2x2向下平移3个单位长度,再向右平移1个单位长度,所得抛物线的函数解析式为y=2(x﹣1)2﹣3,故选C.6.(2分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.二、填空题(共8小题,每小题3分,满分24分)7.(3分)已知,那么的值为.【解答】解:∵,∴a=2b,∴==,故答案为:.8.(3分)当x≤时,二次根式在实数范围内有意义.【解答】解:∵二次根式在实数范围内有意义,∴2﹣3x≥0,解得:x≤.故答案为:x≤.9.(3分)已知m是方程x2﹣x﹣2=0的一个根,则代数式m2﹣m的值是2.【解答】解:把m代入方程x2﹣x﹣2=0,得到m2﹣m﹣2=0,所以m2﹣m=2.故本题答案为2.10.(3分)在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24m.【解答】解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.11.(3分)如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k=﹣2.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|=1,解得k=﹣2,故答案为:﹣2.12.(3分)如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为32°.【解答】解:作直径B′C,交⊙O于B′,连接AB′,则∠AB′C=∠ABC=29°,[来源:Z§xx§k.Com]∵OA=OB′,∴∠AB′C=∠OAB′=29°.∴∠DOC=∠AB′C+∠OAB′=58°.∵CD是⊙的切线,∴∠OCD=90°.∴∠D=90°﹣58°=32°.故答案为:32°13.(3分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为6.【解答】解:∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D,OB=3,OD=2,∴AB=2,∴阴影部分的面积之和为3×2=6.故答案为:6.14.(3分)如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3③a+b+c>0④当x>1时,y随x的增大而增大.正确的说法有①②③.[来源:Z+xx+k.Com]【解答】解:∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∴ac<0,故①正确;∵对称轴为x=1,抛物线与x轴的一个交点为(3,0),∴另一个交点为(﹣1,0),∴方程ax2+bx+c=0的根是x1=﹣1,x2=3,故②正确;当x=1时,y=a+b+c>0,故③正确;∴a、b异号,即b<0,[来源:学+科+网]当x>1时,y随x的增大而减小,故④错误.∴其中正确的说法有①②③;故答案为:①②③.三、解答题(共4小题,满分20分)15.(5分)计算:.【解答】解:原式=1﹣2+4+﹣1=4﹣.16.(5分)解方程:(x﹣1)2=3(x﹣1).【解答】解:方程整理得:(x﹣1)2﹣3(x﹣1)=0,分解因式得:(x﹣1)(x﹣4)=0,[来源:Zxxk.Com]解得:x1=1,x2=4.17.(5分)在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.如果第