2017/2018学年度第一学期期中考试九年级数学试题一.选择题(共6小题,每题3分)1.将方程x2+8x+9=0左边变成完全平方式后,方程是()A.(x+4)2=7B.(x+4)2=25C.(x+4)2=﹣9D.(x+4)2=﹣72.若关于x的方程有实数根,则k的取值范围为()A.k≥0B.k>0C.k≥D.k>3.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)4.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°5.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75B.4.8C.5D.46.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二.填空题(共10小题,每题3分)7.关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为.………………………………密……………封……………线……………内……………不……………准……………答………………………………………题………………………………学校____________班级姓名考试号考场座位号8.在一元二次方程ax2+bx+c=0中,若a、b、c满足关系式a﹣b+c=0,则这个方程必有一个根为.9.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.10.五个正整数从小到大排列,若这组数据的中位数是4,唯一众数是5,则这五个正整数的和为.11.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为.12.若关于x的二次函数221ykxx与x轴仅有一个公共点,则实数k的值为.13.如图,在⊙O的内接六边形ABCDEF中,∠A+∠C=220°,则∠E=°14.如图所示,菱形ABCD,∠B=120°,AD=1,扇形BEF的半径为1,圆心角为60°,则图中阴影部分的面积是.15.两直角边是5和12的直角三角形中,其内心和外心之间的距离是_______.16.如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=.三.解答题(共11小题,共102分)17.(8分)解方程:(1)x2﹣4x+1=0.(2)2(x﹣3)=3x(x﹣3)18.(8分)关于x的一元二次方程x2﹣x﹣(m+1)=0有两个不相等的实数根.DABCFEO(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.19.(6分)图2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?20.(8分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70甲、乙两人的数学成绩统计表(1)a=,=;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是,可看出的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,将被选中.21.(10分)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.2-1-c-n-j-y(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.22.(10分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.23.(10分)如图,已知直径与等边△ABC的高相等的圆O分别与边AB、BC相切于点D、E,边AC过圆心O与圆O相交于点F、G.(1)求证:DE∥AC;(2)若△ABC的边长为a,求△ECG的面积.24.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.25.(10分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC=度,∠BPC=度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.26.(10分)某鲜花销售部在春节前20天内销售一批鲜花.其中,该销售部公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)时间x(天)048121620销量y1(万朵)0162424160关系为二次函数,部分对应值如表所示.与此同时,该销售部还通过某网络电子商务平台销售鲜花,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天)的函数关系如图所示.(1)求y1与x的二次函数关系式及自变量x的取值范围;(2)求y2与x的函数关系式及自变量x的取值范围;(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.27.(12分)如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.2017/2018学年度第一学期第四教育联盟期中考试九年级数学答卷一.选择题(共6小题,每题3分)123456二.填空题(共10小题,每题3分)7.;8.;9.;10.;11.;21教育网12.;13.;14.;15.;16..21三.解答题(共11小题,共102分)17.(8分)解方程:(1)x2﹣4x+1=0.(2)2(x﹣3)=3x(x﹣3).18.(8分)关于x的一元二次方程x2﹣x﹣(m+1)=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最小整数,求此方程的根.19.(6分)图2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?21教育名师原创作品…………………密……………封……………线……………内……………不……………准……………答……………题……………………学校____________班级姓名考试号考场座位号20.(8分)请同学们完成下列问题.第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70(1)a=,=;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是,可看出的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,将被选中.21.(10分)如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.(1)求证:DE∥BC;(2)若AF=CE,求线段BC的长度.22.(10分)已知二次函数y=x2+2x﹣1.(1)写出它的顶点坐标;(2)当x取何值时,y随x的增大而增大;(3)求出图象与x轴的交点坐标.23.(10分)(1)求证:DE∥AC;(2)若△ABC的边长为a,求△ECG的面积.24.(10分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.25.(10分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC=度,∠BPC=度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.26.(10分)(1)求y1与x的二次函数关系式及自变量x的取值范围;(2)求y2与x的函数关系式及自变量x的取值范围;(3)当8≤x≤20时,设该花木公司鲜花日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时的最大值.27.(12分)(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.21·世纪*教育网2017秋学期数学期中考试参考答案一.选择题(共6小题)1-6.AACDBB二.填空题(共10小题)7.﹣1;8.﹣1;9.3π;10.17或18或19;11.5;12.﹣1;13.140;14.;15.;16.2.三.解答题(共11小题)17.(1)原方程的解是:x1=2+,x2=2﹣.(2)原方程的解是:x1=3或x2=.18.(1)(2)x1=0或x2=1.19.解:红方马走一步可能的走法有14种,其中有3种情况吃到了黑方棋子,则红马现在走一步能吃到黑方棋子的概率是.20.(1)a=40,=60;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是160,可看出乙的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,乙将被选中.(1)略(2)BC=60.22.(1)y=x2+2x﹣1=(x+1)2﹣2,∴顶点坐标为:(﹣1,﹣2);(2)∵y=x2+2x﹣1=(x+1)2﹣2的对称轴为:x=﹣1,开口向上,∴当x>﹣1时,y随x的增大而增大;(3)令y=x2+2x﹣1=0,解得:x=﹣1﹣或x=﹣1+,∴图象与x轴的交点坐标为(﹣1﹣,0),(﹣1+,0).23.(1)略;(2)24.(1)m=0,(2)略(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(答案不唯一)(4)3,3,2,﹣1<a<0.25.(1)填空:∠APC=60度,∠BPC=60度;(2)求证:△ACM≌△BCP;(略)(3