2017-2018学年甘肃省临夏州九年级(上)月考数学试卷一、选择题(每小题3分,共36分)1.(3分)下列方程中,是关于x的一元二次方程的是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.2x=12.(3分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.(3分)若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或34.(3分)关于函数y=x2的性质表达正确的一项是()A.无论x为任何实数,y值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、三象限内5.(3分)一元二次方程x2+3x=0的解是()A.x=﹣3B.x1=0,x2=3C.x1=0,x2=﹣3D.x=36.(3分)方程2x(x﹣3)=5(x﹣3)的根为()A.x=2.5B.x=3C.x=2.5或x=3D.非上述答案7.(3分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2B.﹣2C.±2D.±48.(3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9B.11C.13D.149.(3分)一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25B.36C.25或36D.﹣25或﹣3610.(3分)从正方形铁片,截去2cm宽的一条长方形,余下的矩形的面积是48cm2,则原来的正方形铁片的面积是()A.8cmB.64cmC.8cm2D.64cm211.(3分)某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x,根据题意得方程为()A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=17512.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)13.(3分)把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.14.(3分)已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.15.(3分)已知x1,x2是方程x2﹣2x+1=0的两个根,则+=.16.(3分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.17.(3分)已知函数y=(m﹣2)x2+mx﹣3(m为常数).(1)当m时,该函数为二次函数;(2)当m时,该函数为一次函数.18.(3分)抛物线y=2x2﹣bx+3的对称轴是直线x=﹣1,则b的值为.19.(3分)抛物线y=﹣2x2向左平移1个单位,再向上平移7个单位得到的抛物线的解析式是.20.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的图象的顶点坐标是.三、解答题(共60分)21.(10分)用适当的方法解下列方程:(1)2x2﹣3x﹣5=0(2)x2﹣4x+4=0.22.(10分)已知x=1是一元二次方程(m+1)x2﹣m2x﹣2m﹣1=0的一个根.求m的值,并写出此时的一元二次方程的一般形式.23.(10分)汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2013年盈利1500万元,到2015年盈利2160万元,且从2013年到2015年,每年盈利的年增长率相同.(1)求该公司2014年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2016年盈利多少万元?24.(10分)已知二次函数y=x2.(1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标.25.(10分)如图,在一幅矩形地毯的四周镶有宽度相同的花边.如图,地毯中央的矩形图案长8米、宽6米,整个地毯的面积是80平方分米.求花边的宽.26.(10分)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值;(2)求y的最大值;(3)写出当y<0时,x的取值范围.2017-2018学年甘肃省临夏州九年级(上)月考数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)下列方程中,是关于x的一元二次方程的是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.2x=1【分析】根据一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数进行分析即可.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误;C、方程二次项系数可能为0,故错误;D、方程未知数的次数为1次,故不是一元二次方程,故错误.故选A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.(3分)若函数y=a是二次函数且图象开口向上,则a=()A.﹣2B.4C.4或﹣2D.4或3【分析】根据二次函数的定义得到a2﹣2a﹣6=2,由抛物线的开口方向得到a>0,由此可以求得a的值.【解答】解:∵函数y=a是二次函数且图象开口向上,∴a2﹣2a﹣6=2,且a>0,解得a=4.故选:B.【点评】本题考查了二次函数的定义.二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.4.(3分)关于函数y=x2的性质表达正确的一项是()A.无论x为任何实数,y值总为正B.当x值增大时,y的值也增大C.它的图象关于y轴对称D.它的图象在第一、三象限内【分析】根据形如y=ax2(a≠0)的二次函数的性质直接判断即可.【解答】解:二次函数y=x2的图象开口向上,对称轴为y轴.故选C.【点评】本题考查了二次函数的性质,牢记二次函数y=ax2的性质是解答本题的关键.5.(3分)一元二次方程x2+3x=0的解是()A.x=﹣3B.x1=0,x2=3C.x1=0,x2=﹣3D.x=3【分析】分解因式得到x(x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.【解答】解:x2+3x=0,x(x+3)=0,x=0,x+3=0,x1=0,x2=﹣3,故选:C.【点评】本题主要考查对解一元二次方程,解一元一次方程,因式分解等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.6.(3分)方程2x(x﹣3)=5(x﹣3)的根为()A.x=2.5B.x=3C.x=2.5或x=3D.非上述答案【分析】此题用因式分解法比较简单,先移项,再提取公因式,可得方程因式分解的形式,即可求解.【解答】解:移项得:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,解得x﹣3=0或2x﹣5=0,∴x1=3,x2=2.5.故选C.【点评】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程两边公因式较明显,所以本题运用的是因式分解法.7.(3分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2B.﹣2C.±2D.±4【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.【解答】解:把x=4代入方程x2﹣3x=a2可得16﹣12=a2,解得a=±2,故选:C.【点评】本题考查的是一元二次方程的根即方程的解的定义.8.(3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9B.11C.13D.14【分析】易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得,x=2或4,∴第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,∴三角形的周长为3+4+6=13,故选:C.【点评】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.9.(3分)一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为()A.25B.36C.25或36D.﹣25或﹣36【分析】可设这个数的个位数为x,那么十位数字应该是x﹣3,由一个两位数等于它的个位数的平方,列出一元二次方程求解.【解答】解:设这个两位数的个位数字为x,那么十位数字应该是x﹣3,由题意得10(x﹣3)+x=x2,解得x1=5,x2=6;那么这个两位数就应该是25或36.故选C【点评】本题要注意两位数的表示方法,然后根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.10.(3分)从正方形铁片,截去2cm宽的一条长方形,余下的矩形的面积是48cm2,则原来的正方形铁片的面积是()A.8cmB.64cmC.8cm2D.64cm2【分析】可设正方形的边长是xcm,根据“余下的面积是48cm2”,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x﹣2,根据矩形的面积公式即可列出方程求解.【解答】解:设正方形的边长是xcm,根据题意得x(x﹣2)=48,解得x1=﹣6(舍去),x2=8,那么原正方形铁片的面积是8×8=64cm2.故选D.【点评】本题考查了一元二次方程的应用,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.解题过程中要注意根据实际意义进行值的取舍.11.(3分)某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x,根据题意得方程为()A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【解答】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故选:D.【点评】本题考查的是由实际问题抽象出一元二次方程,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可.12.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A