2017-2018学年甘肃省兰州市七里河区九年级上期末模拟数学试卷一、选择题(共10题;共30分)1.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣22.直径分别为8和6的两圆相切,则这两圆的圆心距等于()A.14B.2C.14或2D.7或13.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠04.下列电视台的台标,是中心对称图形的是()A.B.C.D.5.若两圆的半径分别为5和2,圆心距是4,则这两圆的位置关系是()A.外离B.外切C.相交D.内含6.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.D.7.当x0时,函数的图象在()A.第四象限B.第三象限C.第二象限D.第一象限8.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.9.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3B.x1=4,x2=﹣2C.x1=﹣1,x2=3D.x1=﹣4,x2=210.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的,设人行通道的宽度为x千米,则下列方程正确的是()A.(2﹣3x)(1﹣2x)=1B.(2﹣3x)(1﹣2x)=1C.(2﹣3x)(1﹣2x)=1D.(2﹣3x)(1﹣2x)=2二、填空题(共8题;共24分)11.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是________.12.已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1________y2(填“>”或“=”或“<”)13.如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为________.14.如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B,有人在直线AB上点C(靠点B一侧)竖直向上摆放若干个无盖的圆柱形桶.试图让网球落入桶内,已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).当竖直摆放圆柱形桶至少________个时,网球可以落入桶内.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为________.16.代数式在实数范围内有意义,则x的取值范围是________.17.代数式在实数范围内有意义,则x的取值范围是________.18.边长为1的正三角形的内切圆半径为________三、解答题(共6题;共36分)19.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:D为BC的中点;(2)过点O作OF⊥AC,于F,若AF=,BC=2,求⊙O的直径.20.已知x2+(a+3)x+a+1=0是关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根为x1,x2,且x12+x22=10,求实数a的值.21.家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加kΩ.(1)求当10≤t≤30时,R和t之间的关系式;(2)求温度在30℃时电阻R的值;并求出t≥30时,R和t之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6kΩ?22.如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2).23.如图,⊙O是△ABC的外接圆,D是弧ACB的中点,DE//BC交AC的延长线于点E,若AE=10,∠ACB=60°,求BC的长.24.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.四、综合题(共10分)25.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.2017-2018学年甘肃省兰州市七里河区九年级(上)期末模拟数学试卷参考答案与试题解析一、选择题1.【答案】A【考点】解一元二次方程-因式分解法【解析】【解答】解:∵x2+2x=0,∴x(x+2)=0,∴x=0或x+2=0,∴x1=0或x2=﹣2,故选A.【分析】首先提取公因式x可得x(x+2)=0,然后解一元一次方程x=0或x+2=0,据此选择正确选项.2.【答案】D【考点】相切两圆的性质【解析】【分析】两圆相切,则两圆外切或内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.【解答】当两圆外切时,则圆心距等于8÷2+6÷2=7;当两圆内切时,则圆心距等于8÷2-6÷2=1.故选D.【点评】此题考查了两圆的位置关系与数量之间的联系.注意:两圆相切,则两圆内切或外切3.【答案】A【考点】根的判别式【解析】【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x﹣1=0有实数根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)、(2)得,k的取值范围是k≥﹣1.故选:A.【分析】由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.4.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.5.【答案】C【考点】圆与圆的位置关系【解析】【分析】本题主要考查两圆位置关系的判定,确定R-r、R+r、d三者之间的关系即可.【解答】由题意知,圆心距5-2<d<5+2,故两圆相交,故选C.【点评】本题主要考查圆与圆的位置关系,①外离,则P>R+r;②外切,则P=R+r;③相交,则R-r<P<R+r;④内切,则P=R-r;⑤内含,则P<R-r.6.【答案】C【考点】垂径定理【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.【解答】作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.【点评】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线7.【答案】C【考点】反比例函数的图象【解析】【分析】根据反比例函数图象的性质可得.k<0,x<0时图象是位于第二象限。因k=-5<0,所以函数的图象在二、四象限,又∵x<0时,∴函数的图象在第二象限。故选C.8.【答案】C【考点】概率的意义【解析】【解答】解:有(1,3,5),(1,3,7),(1,5,7),(3,5,7),共4等可能的情况;而能构成三角形的只有(3,5,7)一种情况,则P(构成三角形)=.故选C.【分析】先写出所有等可能的情况,再根据三角形的判定条件,找出符合的情况数,并求出概率.9.【答案】B【考点】解一元二次方程-公式法,解一元二次方程-因式分解法【解析】【解答】解:(x+1)(x﹣3)=5,x2﹣2x﹣3﹣5=0,x2﹣2x﹣8=0,化为(x﹣4)(x+2)=0,∴x1=4,x2=﹣2.故选:B.【分析】首先把方程化为一般形式,利用公式法即可求解.10.【答案】A【考点】一元二次方程的应用【解析】【解答】解:设人行通道的宽度为x千米,则矩形绿地的长为:(2﹣3x),宽为(1﹣2x),由题意可列方程:2×(2﹣3x)(1﹣2x)=×2×1,即:(2﹣3x)(1﹣2x)=1,故选:A.【分析】根据题意分别表示出矩形绿地的长和宽,再由铺瓷砖的面积是矩形空地面积的,即矩形绿地的面积=矩形空地面积,可列方程.二、填空题11.【答案】【考点】列表法与树状图法【解析】【解答】解:列表如下:2342(2,2)(3,2)(4,2)3(2,3)(3,3)(4,3)4(2,4)(3,4)(4,4)所有等可能的结果有9种,其中之和为5的情况有2种,则P之和为5=.故答案为:【分析】列表得出所有可能的情况数,找出之和为5的情况数,即可求出所求的概率.12.【答案】>【考点】反比例函数的性质,反比例函数图象上点的坐标特征【解析】【解答】解:∵在反比例函数y=(m<0)中,k=m<0,∴该反比例函数在第二象限内y随x的增大而增大,∵m﹣3<m﹣1<0,∴y1>y2.故答案为:>.【分析】由反比例函数系数小于0,可得出该反比例函数在第二象限单增,结合m﹣1、m﹣3之间的大小关系即可得出结论.13.【答案】【考点】切线的性质【解析】【解答】如图,连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.【分析】根据等腰直角三角形的性质和切线的性质即可得出答案。14.【答案】8【考点】二次函数的应用【解析】【解答】解:(1)以点O为原点,AB所在直线为x轴建立直角坐标系(如图),M(0,5),B(2,0),C(1,0),D(,0)设抛物线的解析式为y=ax2+k,抛物线过点M和点B,则k=5,a=﹣.∴抛物线解析式为:y=﹣x2+5;∴当x=1时,y=;当x=时,y=.∴P(1,),Q(,)在抛物线上;设竖直摆放圆柱形桶m个时网球可以落入桶内,由题意,得,≤m≤,解得:7≤m≤12;∵m为整数,∴m的最小整数值为:8,∴竖直摆放圆柱形桶至少8个时,网球可以落入桶内.故答案为:8.【分析】以抛物线的对称轴为y轴,水平地面为x轴,建立平面直角坐标系,设解析式,结合已知确定抛物线上点的坐标,代入解析式确定抛物线的解析式,由圆桶的直径,求出圆桶两边缘纵坐标的值,确定m的范围,根据m为正整数,得出m的值,即可得到当网球可以落入桶内时,竖直摆放圆柱形桶个数.15.【答案】4【考点】圆锥的计算【解析】【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.16.【答案】x≥1【考点】二次根式有意义的条件【解析】【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【分析】二次根式的有意义的条件为被开方数为非负数.17.【答案