数学:2.3平面向量的坐标运算-课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

平面向量的坐标运算Oxya引入:1.平面内建立了直角坐标系,点A可以用什么来表示?2.平面向量是否也有类似的表示呢?OxyA(a,b)aba3.复习平面向量基本定理:如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使得a=λ1e1+λ2e2.不共线的两向量e1,e2叫做这一平面内所有向量的一组基底.什么叫平面的一组基底?平面的基底有多少组?无数组其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.(1)取基底:与x轴方向,y轴方向相同的两个单位向量i、j作为基底.xyoija)y,x(a⑴⑴式叫做向量的坐标表示.注:每个向量都有唯一的坐标.(一)平面向量坐标的概念(2)任作一个向量a,由平面向量基本定理,有且只有一对实数x、y,使得a=xi+yj.我们把(x,y)叫做向量a的坐标,记作得到实数对:在直角坐标系内,我们分别例1.用基底i,j分别表示向量a,b,c,d,并求出它们的坐标.-4-3-2-11234ABij12-2-1Oxyabcd问1:设的坐标与的坐标有何关系?,aABaAB、45323(2,3)ABij23(2,3)bij23(2,3)cij23(2,3)dija的坐标等于AB的终边坐标减去起点坐标。1122(,),(,),AxyBxy若则AB问2:什么时候向量的坐标和点的坐标统一起来?问1:设的坐标与的坐标有何关系?,aABaAB、问3:相等向量的坐标有什么关系?1ABij1OxyaA1B1(x1,y1)(x2,y2)P(x,y)b2121(,)xxyy结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。4321-1-2-3-2246ij),(yxP(,)OPxiyjxy向量的坐标与点的坐标关系O向量P(x,y)一一对应OPxiyj小结:对向量坐标表示的理解:(1)任一平面向量都有唯一的坐标;(2)向量的坐标等于终点坐标减去起点坐标;当向量的起点在原点时,向量终点的坐标即为向量的坐标.(3)相等的向量有相等的坐标.),,(),,(2211yxbyxaba,若.,),,(),(21212211yyxxyxyx即则练习:在同一直角坐标系内画出下列向量.(1)(1,2)a(2)(1,2)b(1,2)A.xyoaxyo(1,2)B.解:b1122(,),(,),,(,),axybxyababaxya问题:(1)已知求的坐标.(2)已知和实数求的坐标.(二)平面向量的坐标运算:1122(1)abxiyjxiyj1212(,)abxxyy同理得(2)(,)axiyjxiyjxy结论2:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.结论3:实数与向量数量积的坐标等于用这个实数乘原来向量的相应坐标.1212xxiyyj1212(,)xxyy已知,求的坐标.ABOxyB(x2,y2)A(x1,y1)ABOBOA结论1:一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。1122(,),(,)AxyBxy从向量运算的角度2,211()(,)xyxy2121(,)xxyy2(2,1),(3,4),,,34abababab例:已知求的坐标.(2,1)(3,4)(1,5)ab解:(2,1)(3,4)(5,3)ab343(2,1)4(3,4)(6,3)(12,16)ab(6,19)例3已知三个力1F(3,4),2F(2,5),3F(x,y)的合力1F+2F+3F=0求3F的坐标。解:由题设1F+2F+3F=0得:(3,4)+(2,5)+(x,y)=(0,0)即:054023yx∴15yx∴3F(5,1)(2,3),(3,5),ABBA例4、1已知求的坐标.(1,2),(2,1),ABAB2已知求的坐标.解:BA2,33,55,2.,解:设Bx,y1,2,2,1,ABxy1221xy即31xy.即B3,-1例5:已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标。4321-1-2-3-4-6-4-2246xyOA(-2,1)B(-1,3))C(3,4)D(x,y),)Dxy解:设顶点的坐标为()2,1()13),2(1(AB)4,3(yxDC123-,4)ABDCxy有得:(,)(yx4231),的坐标是(顶点22Dyx22OyxABCD例5:已知平行四边形ABCD的三个顶点的坐标分别是(-2,1)、(-1,3)、(3,4),求顶点D的坐标.变式:已知平面上三点的坐标分别为A(2,1),B(1,3),C(3,4),求点D的坐标使这四点构成平行四边形四个顶点。OyxABC解:当平行四边形为ADCB时,由得D1=(2,2)DCAB当平行四边形为ACDB时,得D2=(4,6)D1D2当平行四边形为DACB时,得D3=(6,0)D3课堂总结:1.向量的坐标的概念:2.对向量坐标表示的理解:3.平面向量的坐标运算:(1)任一平面向量都有唯一的坐标;(2)向量的坐标与其起点、终点坐标的关系;(3)相等的向量有相等的坐标.1122(,),(,),axybxy(1)若则1212(,),abxxyy1212(,),abxxyy11(,)axy1122(,),(,),AxyBxy(2)若2121(,)ABxxyy(,)axiyjxy4.能初步运用向量解决平面几何问题:“向量”的思想

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功