1初一数学找规律一、数字排列规律题1、下面数列后两位应该填上什么数字呢?23581217____2、请填出下面横线上的数字。112358____213、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?4、有一串数字36101521___第6个是什么数?5、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1B.2C.3D.46、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为_________个.7、一组按规律排列的数:41,93,167,2513,3621,……请你推断第9个数是.8、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…………由此规律知,第⑤个等式是.9、观察下列各式;①、12+1=1×2;②、22+2=2×3;③、32+3=3×4;………请把你猜想到的规律用自然数n表示出来。10、观察下面的几个算式:①、1+2+1=4;②、1+2+3+2+1=9;③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n个式子11、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是()A.1B.2C.3D.412、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。第1行1第2行-23第3行-45-6第4行7-89-10第5行11-1213-1415………………(第13题)13、已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于.14、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?(3)小凡在计算时发现,11×11=121,111×111=12321,1111×1111=1234321,他从中发现了一个规律。你能根据他所发现的规律很快地写出111111111×111111111=______吗?答案是___________________________。(4)四个同学研究一列数:1,-3,5,-7,9,-11,13,……照此规律,他们得出第n个数分别2如下,你认为正确的是()A.2n-1B.1-2nC.(1)(21)nnD.1(1)(21)nn(5)有一列数123,,,,,naaaa从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a,则2007a为___________.(6)观察数列1,1,2,3,5,8,x,21,y,……,则2x-y=____________(7)观察下列各式:1234567822,24,28,216,232,264,2128,2256,…,请你根据上述规律,猜想108的末位数字是_________.(8)观察下列各式:32113323332333321231236123410……猜想:333312310________15、观察数表,根据其中的规律,在数表中的内填入适当的数。11-11-211-3311-46-411-5-105-11-6-2015-6116.有一列数:第一个数为x1=1,第二个数为x2=3,第三个数开始依次记为x3,x4,…,xn;从第二个数开始,每个数是它相邻两个数和的一半。(如:x2=231xx)(1)求第三、第四、第五个数,并写出计算过程;(2)根据(1)的结果,推测x8=;(3)探索这一列数的规律,猜想第k个数xk=.(k是大于2的整数)17.观察下面一列有规律的数3图1图2图3第21题图,486,355,244,153,82,31,根据这个规律可知第n个数是(n是正整数)6.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为。二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…………从第1个球起到第2005个球止,共有实心球个.2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示)。3、“◆”代表甲种植物,“★”代表乙种植物,为美化环境,采用如图所示方案种植.按此规律第六个图案中应种植乙种植物_________株.★★★★★★★◆◆◆★★◆◆★★★★◆★★★◆◆◆★★◆◆★★★★图1★★★◆◆◆图2★★★★(第四题)4、已知一个面积为S的等边三角形,现将其各边n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n=5时,共向外作出了个小等边三角形(2)当n=k时,共向外作出了个小等边三角形(用含k的式子表示).5、用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子枚(用含有n的代数式表示)………6、观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。7、下图是某同学在沙滩上用石于摆成的小房子.n=3n=4n=5……4……观察图形的变化规律,写出第n个小房子用了块石子.8、用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n)个图案中有白色..地砖块。9.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”如图,在一个边长为1的正方形纸版上,依次贴上面积为21,41,81,…,n21的矩形彩色纸片(n为大于1的整数)。请你用“数形结合”的思想,依数形变化的规律,计算n21814121=。10.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_条折痕.如果对折n次,可以得到条折痕.三、根据已知等式探究规律1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____3、已知下列等式:第10题5①13=12②13+23=32③1+23+33=62④13+23+33+43=102……由此规律可知,第⑤个等式是4、观察下列等式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;……用你发现的规律确定22007的个位数学数字是分析:观察计算结果的末位数字,依次按2,4,8,6循环出现。而2007÷4=501……3,故22007的个位数字与23的个位数字相同,所以2的个位数字是819.研究下列等式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…设n为正整数,请用n表示出规律性的公式来.5、探索规律可写成,可写成可写成,可写成(1)把这个规律用含有n的式子写出来;(2)计算952.6、观察:…计算:.7、…,若符合前面式子的规律,则。10102babaab8、观察:11111()35235,11111()5725764567891011121314151617181920212223242526272811111()79279…………计算:111111112446681820L=。9、一只小虫在数轴上原点处,第一次向右跳了1个单位,紧接着又向左跳了2个单位,第3次向右跳了3个单位,第4次向左跳了4个单位……按以上规律,它共跳了101次,你能确定小虫在数轴上的最后落点表示什么数吗?10.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式按照上述规律排下去,那么第10行从左边第9个数是.11.观察下列等式9-1=816-4=1225-9=1636-16=20…………这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为.四、与数阵有关的问题1、]下图所示是一个数表,现用一个矩形在数表中任意框出4个数]则:(1)、a、c的关系是:__________________;(2)、当a+b+c+d=32时,a=__________.2、上面给出的是2004年3月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是()A.69B.54C.27D.403、在如图所示的2003年1月份的日历中,用一个方框圈出任意3×3个数星期日星期一星期二星期三星期四星期五星期六1234567891011日一二三四五六12345678910111213141516171819202122232425262728293031①②③④前4次跳动图......16-1514-1312-1110-9-76-54-32-1第8题7135791213141516171819202122232425262728293031(1)从左下角到右上角的三个数字之和为45,那么这9个数的和是多少?这9个日期中最后一天是1月几日?(2)用这样的方框能否圈出总和为162的9个数?五、与视图、展开图有关的问题1、如图是几个小立方块所搭的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为()2、下图是由一些相同的小正方体构成的几何体的三视图,在这个几何体中,小正方体的个数是()A、7B、6C、5D、43、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如上图,是一个正方体的平面展开图,若图中“锦”为前面,“似”为下面,“前”为后面,则“祝”表示正方体的面.4、下图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是(A)、7(B)、8(C)、9(D)、105、如图,1P是一块半径为1的半圆形纸板,在1P的左下端剪去一个半径为12的半圆后得到图形2P,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,nPPP,记纸板nP的面积为nS,试计算求出2S;3S;并猜想得到1nnSS2n。(6)人们经常利用图形的规律来计算一些数的和.如在边长为1的网格图1中,从左下角开始,相邻的黑折线围成的面积分别是1,3,5,7,9,11,13,15,17,它们有下面的规律:1+3=22;1+3+5=32;1+3+5+7=42;1+3+5+7+9=52;……1221ADBC123645图(12)锦似程前你祝图18请你按照上述规律,计算1+3+5+7+9+11+13的值,并在图1中画出能表示该算式的图形;(2)请你按照上述规律,计算第n条黑折线与第1n条黑折线所围成的图形面积;(3)请你在边长为1的网格图2中画出下列算式所表示的图形.1+8=32;