2017年广西玉林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列四个数中最大的数是()A.0B.﹣1C.﹣2D.﹣32.(3分)如图,直线a,b被c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角3.(3分)一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B.86.4×103C.8.64×104D.0.864×1054.(3分)一组数据:6,3,4,5,7的平均数和中位数分别是()A.5,5B.5,6C.6,5D.6,65.(3分)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=16.(3分)如图所示的几何体的俯视图是()A.B.C.D.7.(3分)五星红旗上的每一个五角星()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形8.(3分)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下B.对称轴是x=mC.最大值为0D.与y轴不相交9.(3分)如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD的中点,连接EG,HF,则图中矩形的个数共有()A.5个B.8个C.9个D.11个10.(3分)如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A.15海里B.30海里C.45海里D.30海里11.(3分)如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是()A.240°B.360°C.480°D.540°12.(3分)如图,AB是⊙O的直径,AC,BC分别与⊙O相交于点D,E,连接DE,现给出两个命题:①若AC=AB,则DE=CE;②若∠C=45°,记△CDE的面积为S1,四边形DABE的面积为S2,则S1=S2,那么()A.①是真命题②是假命题B.①是假命题②是真命题C.①是假命题②是假命题D.①是真命题②是真命题二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)|﹣1|=.14.(3分)若4a2b2n+1与amb3是同类项,则m+n=.15.(3分)分解因式:a3﹣ab2=.16.(3分)如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是人.17.(3分)如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是.18.(3分)已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是.三、解答题(本大题共8小题,共66分)19.(6分)计算:(2017﹣π)0+﹣2tan45°.20.(6分)化简:(a+1﹣)÷,然后给a从1,2,3中选取一个合适的数代入求值.21.(6分)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.22.(8分)在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列问题:(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?23.(9分)如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.24.(9分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.25.(10分)如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.26.(12分)如图,一次函数y=k1x+5(k1<0)的图象与坐标轴交于A,B两点,与反比例函数y=(k2>0)的图象交于M,N两点,过点M作MC⊥y轴于点C,已知CM=1.(1)求k2﹣k1的值;(2)若=,求反比例函数的解析式;(3)在(2)的条件下,设点P是x轴(除原点O外)上一点,将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由.2017年广西玉林市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•玉林)下列四个数中最大的数是()A.0B.﹣1C.﹣2D.﹣3【分析】比较各项数字大小即可.【解答】解:∵0>﹣1>﹣2>﹣3,∴最大的数是0,故选A【点评】此题考查了有理数的大小比较,弄清两个负数比较大小的方法是解本题的关键.2.(3分)(2017•玉林)如图,直线a,b被c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角【分析】由内错角的定义(两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角)进行解答.【解答】解:如图所示,两条直线a、b被直线c所截形成的角中,∠1与∠2都在a、b直线的之间,并且在直线c的两旁,所以∠1与∠2是内错角.故选:B.【点评】本题考查了同位角,内错角以及同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.(3分)(2017•玉林)一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B.86.4×103C.8.64×104D.0.864×105【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:86400=8.64×104.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(3分)(2017•玉林)一组数据:6,3,4,5,7的平均数和中位数分别是()A.5,5B.5,6C.6,5D.6,6【分析】根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答.【解答】解:平均数为:×(6+3+4+5+7)=5,按照从小到大的顺序排列为:3,4,5,6,7,所以,中位数为:5.故选A.【点评】本题考查了中位数与算术平均数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.5.(3分)(2017•玉林)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=1【分析】根据同底数幂的乘法、除法法则、幂乘方的运算法则,合并同类项法则一一判断即可.【解答】解:A、错误.(a3)2=a6.B、正确.a2•a3=a5.C、错误.a6÷a2=a4.D、错误.3a2﹣2a2=a2,故选B.【点评】本题考查同底数幂的乘法、除法法则、幂的乘方的运算法则,合并同类项法则,解题的关键是记住同底数幂的乘法、除法法则、幂的乘方的运算法则,合并同类项法则.6.(3分)(2017•玉林)如图所示的几何体的俯视图是()A.B.C.D.【分析】根据俯视图的作法即可得出结论.【解答】解:从上往下看该几何体的俯视图是D.故选D.【点评】本题考查的是简单几何体的三视图,熟知俯视图的作法是解答此题的关键.7.(3分)(2017•玉林)五星红旗上的每一个五角星()A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形【分析】根据轴对称与中心对称图形的性质即可得出结论.【解答】解:∵五星红旗上的五角星是等腰三角形,∴五星红旗上的每一个五角星是轴对称图形,但不是中心对称图形.故选A.【点评】本题考查的是轴对称与中心对称图形的性质,熟知五角星的特点是解答此题的关键.8.(3分)(2017•玉林)对于函数y=﹣2(x﹣m)2的图象,下列说法不正确的是()A.开口向下B.对称轴是x=mC.最大值为0D.与y轴不相交【分析】根据二次函数的性质即可一一判断.【解答】解:对于函数y=﹣2(x﹣m)2的图象,∵a=﹣2<0,∴开口向下,对称轴x=m,顶点坐标为(m,0),函数有最大值0,故A、B、C正确,故选D.【点评】本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,属于基础题,中考常考题型.9.(3分)(2017•玉林)如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD的中点,连接EG,HF,则图中矩形的个数共有()A.5个B.8个C.9个D.11个【分析】根据矩形的判定定理解答.【解答】解:∵E,G分别是边DA,BC的中点,四边形ABCD是矩形,∴四边形DEGC、AEGB是矩形,同理四边形ADHF、BCHF是矩形,则图中四个小四边形是矩形,故图中矩形的个数共有9个,故选:C.【点评】本题考查的是中点四边形的性质、矩形的判定,掌握矩形的判定定理、中点四边形的性质是解题的关键.10.(3分)(2017•玉林)如图,一艘轮船在A处测得灯塔P位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()A.15海里B.30海里C.45海里D.30海里【分析】作CD⊥AB,垂足为D.构建直角三角形后,根据30°的角对的直角边是斜边的一半,求出BP.【解答】解:作BD⊥AP,垂足为D.根据题意,得∠BAD=30°,BD=15海里,∴∠PBD=60°,则∠DPB=30°,BP=15×2=30(海里),故选:B.【点评】本题考查了解直角三角形,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.11.(3分)(2017•玉林)如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA绕点O顺时针转过的角度是()A.240°B.360°C.480°D.540°【分析】根据正三角形的性质分别得出点O转动的角度,进而得出答案.【解答】解:由题意可得:第一次AO