2017年浙江省丽水市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2B.﹣1C.0D.12.(3分)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.(3分)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同4.(3分)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数31111PM2.51820212930A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米5.(3分)化简+的结果是()A.x+1B.x﹣1C.x2﹣1D.6.(3分)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2C.m<2D.m≤27.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2C.2D.48.(3分)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位9.(3分)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣10.(3分)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)分解因式:m2+2m=.12.(4分)等腰三角形的一个内角为100°,则顶角的度数是.13.(4分)已知a2+a=1,则代数式3﹣a﹣a2的值为.14.(4分)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.15.(4分)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.16.(4分)如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是.三、解答题(本大题共8小题,第17-19题每题6分,第20,21题每题8分,第22,23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2017)0﹣()﹣1+.18.(6分)解方程:(x﹣3)(x﹣1)=3.19.(6分)如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.(8分)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表县(市、区)任务数(万方)A25B25C20D12E13F25G16H25I11J28合计200(1)截止3月31日,完成进度(完成进度=累计完成数÷任务数×100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.21.(8分)丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:v(千米/小时)7580859095t(小时)4.003.753.533.333.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.22.(10分)如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(10分)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A﹣C﹣B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.24.(12分)如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.2017年浙江省丽水市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•丽水)在数1,0,﹣1,﹣2中,最大的数是()A.﹣2B.﹣1C.0D.1【分析】根据有理数大小比较的规律即可得出答案.【解答】解:﹣2<﹣1<0<1,所以最大的数是1,故选D.【点评】本题考查了有理数大小比较的方法.(1)在数轴上表示的两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.2.(3分)(2017•丽水)计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.【点评】本题考查了同底数幂的乘法运算,掌握同底数幂的乘法运算法则:底数不变,指数相加是解题的关键.3.(3分)(2017•丽水)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、俯视图是一个正方形,主视图是一个长方形,故A错误;B、左视图是一个长方形,主视图是个长方形,且两个长方形的长和宽分别相等,所以B正确;C、左视图是一个长方形,俯视图是一个正方形,故C错误;D、俯视图是一个正方形,主视图是一个长方形,左视图是一个长方形,故D错误;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.4.(3分)(2017•丽水)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()天数31111PM2.51820212930A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【分析】按大小顺序排列这组数据,最中间那个数是中位数.【解答】解:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.【点评】此题主要考查了中位数.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2017•丽水)化简+的结果是()A.x+1B.x﹣1C.x2﹣1D.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+1,故选A【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•丽水)若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2C.m<2D.m≤2【分析】根据方程的解为负数得出m﹣2<0,解之即可得.【解答】解:∵程x﹣m+2=0的解是负数,∴x=m﹣2<0,解得:m<2,故选:C.【点评】本题主要考查解一元一次方程和一元一次不等式的能力,根据题意列出不等式是解题的关键.7.(3分)(2017•丽水)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2C.2D.4【分析】证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.【点评】本题考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.8.(3分)(2017•丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位【分析】根据平移规律,可得答案.【解答】解:A、平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B、平移后,得y=(x﹣3)2,图象经过A点,故B不符合题意;C、平移后,得y=x2+3,图象经过A点,故C不符合题意;D、平移后,得y=x2﹣1图象不经过A点,故D符合题意;故选:D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.9.(3分)(2017•丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣【分析】连接OC,根据已知条件得到∠ACB=90°,∠AOC=30°,∠COB=120°,解直角三角形得到AB=2AO=4,BC=2,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接OC,∵点C是以AB为直径的半圆O的三等分点,∴∠ACB=90°,∠AOC=60°,∠COB=120°,∴∠ABC=30°,∵AC=2,∴AB=2AO=4,BC=2,∴OC=OB=2,∴阴影部分的面积=S扇形﹣S△OBC=﹣×2×1=π﹣,故选A.【点评】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.10.(3分)(2017•丽水)在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:A、由