2019年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2019•广东)﹣2的绝对值是()A.2B.﹣2C.D.±22.(3分)(2019•广东)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106B.2.21×105C.221×103D.0.221×1063.(3分)(2019•广东)如图,由4个相同正方体组合而成的儿何体,它的左视图是()A.B.C.D.4.(3分)(2019•广东)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a65.(3分)(2019•广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.6.(3分)(2019•广东)数据3,3,5,8,11的中位数是()A.3B.4C.5D.67.(3分)(2019•广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>bB.|a|<|b|C.a+b>0D.<08.(3分)(2019•广东)化简的结果是()A.﹣4B.4C.±4D.29.(3分)(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=210.(3分)(2019•广东)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)(2019•广东)计算:20190+()﹣1=.12.(4分)(2019•广东)如图,已知a∥b,∠1=75°,则∠2=.13.(4分)(2019•广东)一个多边形的内角和是1080°,这个多边形的边数是.14.(4分)(2019•广东)已知x=2y+3,则代数式4x﹣8y+9的值是.15.(4分)(2019•广东)如图,某校教学楼AC与实验楼BD的水平间距CD=15米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).16.(4分)(2019•广东)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)(2019•广东)解不等式组:18.(6分)(2019•广东)先化简,再求值:(﹣)÷,其中x=.19.(6分)(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)(2019•广东)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10CxD2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.21.(7分)(2019•广东)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?22.(7分)(2019•广东)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2019•广东)如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.24.(9分)(2019•广东)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.25.(9分)(2019•广东)如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?2019年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2019•广东)﹣2的绝对值是()A.2B.﹣2C.D.±2【考点】绝对值.菁优网版权所有【分析】根据负数的绝对值是它的相反数,即可解答.【解答】解:|﹣2|=2,故选:A.2.(3分)(2019•广东)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106B.2.21×105C.221×103D.0.221×106【考点】科学记数法—表示较大的数.菁优网版权所有【分析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将221000用科学记数法表示为:2.21×105.故选:B.3.(3分)(2019•广东)如图,由4个相同正方体组合而成的儿何体,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.菁优网版权所有【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A.4.(3分)(2019•广东)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.菁优网版权所有【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:C.5.(3分)(2019•广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【考点】轴对称图形;中心对称图形.菁优网版权所有【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、既是轴对称图形,也是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.6.(3分)(2019•广东)数据3,3,5,8,11的中位数是()A.3B.4C.5D.6【考点】中位数.菁优网版权所有【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.故选:C.7.(3分)(2019•广东)实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>bB.|a|<|b|C.a+b>0D.<0【考点】绝对值;实数与数轴.菁优网版权所有【分析】先由数轴可得﹣2<a<﹣1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:﹣2<a<﹣1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;<0,故D正确;故选:D.8.(3分)(2019•广东)化简的结果是()A.﹣4B.4C.±4D.2【考点】算术平方根.菁优网版权所有【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.9.(3分)(2019•广东)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2【考点】根与系数的关系.菁优网版权所有【分析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2﹣2x=0中可得出x12﹣2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1•x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.10.(3分)(2019•广东)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.菁优网版权所有【分析】由正方形的性质得到FG=BE=2,∠FGB=90°,AD=4,AH=2,∠BAD=90°,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≌△GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=AG=1,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM=AG=2,根据三角形的面积公式即可得到结论.【解答】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,