图形的相似综合复习题一、选择题(每小题6分,共24分)1.(2014·重庆)如图,△ABC∽△DEF,相似比为1∶2,若BC=1,则EF的长是(B)A.1B.2C.3D.42.(2014·泰安)在△ABC和△A1B1C1中,下列四个命题:①若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;②若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;③若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;④若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为(B)A.4个B.3个C.2个D.1个3.(2014·宁波)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为(C)A.2∶3B.2∶5C.4∶9D.2∶3解析:∵AD∥BC,∴∠ACB=∠DAC,又∵∠B=∠ACD=90°,∴△CBA∽△ACD,BCAC=ACAD=ABDC,AB=2,DC=3,∴BCAC=ACAD=ABDC=23,∴BCAC=23,∴cos∠ACB=BCAC=23,cos∠DAC=ACDA=23,∴BCAC·ACDA=23×23=49,∴BCDA=49,∵△ABC与△DCA的面积比=BCDA,∴△ABC与△DCA的面积比=49,故选:C4.(2013·孝感)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为12,把△EFO缩小,则点E的对应点E′的坐标是(D)A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)解析:如图二、填空题(每小题6分,共24分)5.(2014·邵阳)如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:__△ABP∽△AED(答案不唯一)__.,第5题图),第6题图)6.(2014·滨州)如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则ADAB=__22__.7.(2013·安徽)如图,P为平行四边形ABCD边AD上一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2,若S=2,则S1+S2=__8__.解析:过点P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12BC,∴△PEF∽△PBC,且相似比为1∶2,∴S△PEF∶S△PBC=1∶4,S△PEF=2,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8,第7题图),第8题图)8.(2014·娄底)如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为__9__m.三、解答题(共52分)9.(10分)(2013·巴中)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)解:∵▱ABCD,∴CD=AB=8.由(1)知△ADF∽△DEC,∴ADDE=AFCD,∴DE=AD·CDAF=63×843=12.在Rt△ADE中,由勾股定理得AE=DE2-AD2=122-(63)2=610.(10分)(2014·巴中)如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即S△A1B1C1:S△A2B2C2=____(不写解答过程,直接写出结果).解:(1)如图所示:△A1B1C1即为所求(2)如图所示:△A2B2C2即为所求(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为1∶2,∴S△A1B1C1∶S△A2B2C2=1∶411.(10分)(2013·德宏州)如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少毫米?解:根据物体成像原理知:△LMN∽△LBA,∴MNAB=LCLD.(1)∵像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,∴3550=4.9LD,解得LD=7,∴拍摄点距离景物7米(2)拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,∴35LC=24,解得LC=70,∴相机的焦距应调整为70mm12.(10分)(2014·遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF交BD于点O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求AD的长.(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中,∠ODF=∠OBE,∠DOF=∠BOE,DF=BE,∴△ODF≌△OBE(AAS),∴BO=DO(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS),∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG=DF2+FG2=2,∵AB∥CD,∴ADDG=EFFG,即AD2=21,∴AD=2213.(12分)(2013·衢州)(1)提出问题如图①,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究如图②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.(3)拓展延伸如图③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC与∠ACN的数量关系,并说明理由.(1)证明:∵△ABC,△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,AB=AC,∠BAM=∠CAN,AM=AN,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN(2)解:结论∠ABC=∠ACN仍成立.理由如下:∵△ABC,△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,AB=AC,∠BAM=∠CAN,AM=AN,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN(3)解:∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴ABAM=ACAN,又∵∠BAM=∠BAC-∠MAC,∠CAN=∠MAN-∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN2015年名师预测1.如图,M是Rt△ABC的斜边BC上异于B,C的一定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条,第1题图),第2题图)2.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为__(2,4-22)__.